• Дать определение радиационного баланса и его составляющих. Относительная и абсолютная влажность - что это такое? Какими величинами характеризуется влажность воздуха

    02.02.2021

    Радиационный баланс атмосферы и подстилающей поверхности, сумма прихода и расхода лучистой энергии, поглощаемой и излучаемой атмосферой и подстилающей поверхностью. Для атмосферы радиационный баланс состоит из приходной части - поглощённой прямой и рассеянной солнечной радиации, а также поглощённого длинноволнового (инфракрасного) излучения земной поверхности, и расходной части - потери тепла за счёт длинноволнового излучения атмосферы в направлении к земной поверхности (т. н. противоизлучение атмосферы) и в мировое пространство.

    Приходную часть радиационного баланса подстилающей поверхности составляют: поглощённая подстилающей поверхностью прямая и рассеянная солнечная радиация, а также поглощённое противоизлучение атмосферы; расходная часть состоит из потери тепла подстилающей поверхностью за счёт собственного теплового излучения. Радиационный баланс является составной частью теплового баланса атмосферы и подстилающей поверхности.

    Дать определение характеристик влажности воздуха

    В атмосфере Земли содержится около 14 тыс. км3 водяного пара. Вода попадает в атмосферу в результате испарения с подстилающей поверхности. В атмосфере влага конденсируется, перемещается воздушными течениями и вновь выпадает в виде разнообразных осадков на поверхность Земли, совершая, таким образом, постоянный круговорот воды. Круговорот воды возможен, благодаря, способности воды находится в трёх состояниях (жидком, твердом, газообразном (парообразном)) и легко переходить из одного состояния в другое. Влагооборот является одним из важнейших циклов климатообразования.

    Для количественного выражения содержания водяного пара в атмосфере употребляют различные характеристики влажности воздуха. Основные характеристики влажности воздуха - упругость водяного пара и относительная влажность.

    Упругость (фактическая) водяного пара (е) - давление водяного пара находящегося в атмосфере выражается в мм. рт. ст. или в миллибарах (мб). Численно почти совпадает с абсолютной влажностью (содержанием водяного пара в воздухе в г/м3), поэтому упругость часто называют абсолютной влажностью. Упругость насыщения (максимальная упругость) (Е) - предел содержания водяного пара в воздухе при данной температуре. Значение упругости насыщения зависит от температуры воздуха, чем выше температура, тем больше он может содержать водяного пара.

    Если воздух содержит водяного пара меньше, чем нужно для насыщения его при данной температуре, можно определить, насколько воздух близок к состоянию насыщения. Для этого вычисляют относительную влажность.

    Относительная влажность (r) - отношение фактической упругости водяного пара к упругости насыщения, выраженное в процентах.

    Имеются и другие важные характеристики влажности, как дефицит влажности и точка росы.

    Дефицит влажности (D) - разность между упругостью насыщения и фактической упругостью:

    Точка росы фє - температура, при которой содержащийся в воздухе водяной пар мог бы насытить его. Пример, воздух при температуре 27єС имеет е = 27,4 мб. Насытится он при температуре 20єС, которая и будет точкой росы.

    Часто с экранов телевизоров или из динамиков радиоприёмников мы слышим про давление и влажность воздуха. Но немногие знают, от чего зависят их показатели и как те или иные их значения сказываются на организме человека.

    Средства и методы определения

    Для определения насыщенности воздуха водяными парами используются специальные приборы: психрометры и гидрометры. Психрометр Августа представляет собой планку с двумя термометрами: влажным и сухим.

    Первый обмотан смоченной в воде тканью, которая при испарении охлаждает его корпус. Опираясь на показания этих термометров, по таблицам определяют относительную влажность воздуха. Существует множество различных гидрометров, их работа может быть основана на весовом, плёночном, электрическом или волосном, а также ряде других принципов действия. В последние годы обрели популярность интегральные датчики измерения. Для того чтобы проверить точность используются гидростаты.

    В атмосфере Земли содержится около 14 тыс. км 3 водяного пара. Вода попадает в атмосферу в результате испарения с подстилающей поверхности. В атмосфере влага конденсируется, перемещается воздушными течениями и вновь выпадает в виде разнообразных осадков на поверхность Земли, совершая, таким образом, постоянный круговорот воды. Круговорот воды возможен, благодаря, способности воды находится в трёх состояниях (жидком, твердом, газообразном (парообразном)) и легко переходить из одного состояния в другое. Влагооборот является одним из важнейших циклов климатообразования.

    Для количественного выражения содержания водяного пара в атмосфере употребляют различные характеристики влажности воздуха. Основные характеристики влажности воздуха – упругость водяного пара и относительная влажность.

    Упругость (фактическая) водяного пара (е) – давление водяного пара находящегося в атмосфере выражается в мм.рт.ст. или в миллибарах (мб). Численно почти совпадает с абсолютной влажностью (содержанием водяного пара в воздухе в г/м 3), поэтому упругость часто называют абсолютной влажностью. Упругость насыщения (максимальная упругость) (Е) – предел содержания водяного пара в воздухе при данной температуре. Значение упругости насыщения зависит от температуры воздуха, чем выше температура, тем больше он может содержать водяного пара.

    Зависимость максимальной упругости от температуры.

    Температура (о С)

    Е (мм.рт.ст.)

    Если воздух содержит водяного пара меньше, чем нужно для насыщения его при данной температуре, можно определить, насколько воздух близок к состоянию насыщения. Для этого вычисляют относительную влажность.

    Относительная влажность (r) – отношение фактической упругости водяного пара к упругости насыщения, выраженное в процентах:

    Распределение среднемесячной относительной влажности в июле (%) (по С.Г. Любушкиной и др.).

    Распределение среднемесячной относительной влажности в январе (%) (по С.Г. Любушкиной и др.).

    При насыщении е = Е, r = 100%.

    Имеются и другие важные характеристики влажности, как дефицит влажности и точка росы.

    Дефицит влажности (D) – разность между упругостью насыщения и фактической упругостью:

    Точка росы τº – температура, при которой содержащийся в воздухе водяной пар мог бы насытить его. Пример, воздух при температуре 27ºС имеет е = 27,4 мб. Насытится он при температуре 20ºС, которая и будет точкой росы.

    Литература

    1. Зубащенко Е.М. Региональная физическая география. Климаты Земли: учебно-методическое пособие. Часть 1. / Е.М. Зубащенко, В.И. Шмыков, А.Я. Немыкин, Н.В. Полякова. – Воронеж: ВГПУ, 2007. – 183 с.

    Фактическая упругость водяного пара -е - оказываемое им давление измеряемся в мм рт.ст. или миллибарах.

    Упругость В.п. в состоянии насыщения называют упругостью насыще­ния - Е - это максимальная упругость в.п.возможная при данной t 0 . Упру­гость насыщения растёт с t 0 воздуха: при более высокой t 0 воздух способен удержать больше в.п.,чем при более низкой.

    На каждые 10 0 С упругость насыщения увеличивается ≈ в 2 раза.

    Если в воздухе содержится в.п. меньше,чем нужно для насыщения его при данной t 0 , можно определить, насколько воздух близок к состоянию на­сыщения. Для этого определяется относительная влажность - r - (она харак­теризует степень насыщения воздуха водяным паром).

    r = е /Е 100%

    При насыщении е = Е и r = 100%

    Абсолютная влажность воздуха - плотность водяного пара -а (выра­жается в граммах на 1 м 3 воздуха).

    Дефицит влажности Д - разность между упругостью насыщения Е и фактической упругостью пара е при данной t 0 воздуха.

    Д = Е - е

    Точка росы τ - t 0 при которой содержащийся в воздухе в.п. Мог бы на­сытить воздух.

    Конденсация - переход воды из газообразного состояния в жидкое происходит в атм. в виде образования мельчайших капелек диаметром в несколоко микронов. Более крупные капли образуются при слиянии мелких или таянии ледяных кристаллов.

    В воздухе насыщенным вод.паром при понижении t 0 воздуха до точки росыτ или увеличении в нем количества в.п. происходит конденсация, при t 0 ниже 0 0 С, вода минуя жидкое состояние может перейти в твёрдое, образуя ледяные кристаллы; этот процесс называется сублимация.

    Конденсация и сублимация могут происходить в воздухе на ядрах кон­денсации, на земной поверхности и различных предменах. Важнейшими ядра­ми конденсации являются частички растворимых гигроскопичных солей, особенно морской соли (они попадают в воздух при волнение моря, при раз­брызгивании морской воды и т.д.).

    Когда t 0 воздуха охлаждающегося от подстилающей поверхности дости­гает точки росы, на холодную поверхность из него оседают: роса, иней, измо­розь, жидкие и твёрдые (наледь) налеты, гололёд.

    4. Облака и их образование, структура, строение, ярусы .

    Если конденсация (сублимация) водяного пара происходит на некото­рой высоте над поверхностью, то образуются облака .Они отличаются от ту­манов положением в атмосфере, физическим строением и разнообразием форм.

    Облака - скопление продуктов конденсации и сублимации, их возник­новение связано с адиабатическим охлаждением поднимающегося воздуха. Поднимающийся воздух охлаждается постепенно, достигает границы, где его t 0 становится равной точке росы. Эту границу называют уровнем конденса­ции . Выше её при наличие ядер конденсации могут образовываться облака. Нижняя граница облаков совпадает с уровнем конденсации. Кристаллизация происходит при t 0 ниже -10 0 С. Опускаясь ниже уровня конд. капельки обла­ков могут испаряться.

    Облака переносятся возд.течениями. Если относительная влажность в воздухе, содержащим облака, убывает, то они могут испариться. При опре­делённых условиях часть облачных элементов укрупняется , утяжеляется и может выпадать из облака в виде осадков .

    По строению облака делятся на 3 класса:

    1) водяные (капельные) - при положительных t 0 состоят из капель диа­метром в тысячные и сотые доли мм, при отрицательных t 0 состоят из пере­охлаждённых капелек;

    2) ледяные (кристаллические) - образуются при достаточно низких t 0 ;

    3) смешанные - состоят из смеси переохлаждённых капель и ледяных кристаллов, образуются при умеренно отрицательных t 0 .

    Формы облаков очень разнообразны. В современной международной классификации делятся на 10 родов, в которых различают значительное чис­ло видов, разновидностей и дополнительных особенностей.

    Международная классификация облаков.

    Облака этих родов встречаются на высотах между уровнем моря и тро­попаузой. Условно разлтчают 3 яруса, границы ярусов зависят от географи­ческой широты и t 0 условий.

    Верхний ярус облаков: полярные широты - 3-8 км, умеренные- 5-13 км, тропические - 6 -18 км.

    Средний ярус облаков: полярные широты - 2-4 км, умеренные - 2-7 км, тропические - 2-8 км.

    Нижний ярус облаков: во всех широтах - до 2 км.

    Основные семейства и рода облаков и условия их образования.

    По высоте и внешнему виду облака объединяются в 4 семейства:

    IV cем. - облака вертикального развития

    10 основных родов облаков объединяются в семейства следующим об­разом.

    I cем. - облака верхнего яруса

    1. перистые - Cirrus (Ci)

    2. перисто-кучевые - Cirrocumulus (Cc)

    3. перисто-слоистые - Cirrostatus (Cs)

    II cем. - облака среднего яруса

    4. высоко - кучевые - Altocumulus (Ac)

    5. высоко - слоистые - Altoostatus (As) (могут проникать в верхний ярус)

    III cем. - облака нижнего яруса

    6. слоистокучевые - Stratocumulus (Sc)

    7. слоистые - Stratus (St)

    8. слоисто - дождевые - Nimbostratus (Ns) (почти всегда располагаются в ниж­нем ярусе, но обычно проникают и ввышележащие ярусы)

    IV cем. - облака вертикального развития (основания лежат в нижнем ярусе, вершины постигают положения облаков вырхнего яруса)

    9. кучевые - Cumulus (Cu)

    10. кучево -дождевые - Cumulonimbus (в т.ч. грозовые и ливневые)

    Характер и форма облаков обуславливаются процессами вызывающи­ми охлаждение воздуха, приводящими к облакообразованию.

    Выделяют несколько генетических типов облаков.

    I. Облака конвекции (кучевообразные) образуются в результате конвек­ции, при нагревании неоднородной поверхности: 1) внутримассовые (связа­ны с процессами внутри воздушных масс); 2) фронтальные (возникают благодаря процессам, связанным с фронтами, т.е. на границах между воздуш­ными массами); 3) орографические (образуются при натекании воздуха на склоны гор и возвышенностей).

    II. Волнистые облака возникают преимущественно под слоем инвер­сии (слоистые, слоисто-кучевые, высоко-слоистые). В устойчивых воздуш­ных массах основной процесс развития облаков - слабый турбулентный перенос водяного пара вместе с воздухом от земной поверхности вверх и по­следующее его адиабатическое охлаждение.

    III. Облака восходящего скольжения (слоистообразные) - это огромные облачные системы, вытянутые вдоль тёплых или холодных фронтов (особен­но хорошо выраженные в случае теплого фронта).

    Атмосферные осадки

    Атмосферными осадками называют воду, выпавшую на поверхность из атмосферы в виде дождя, мороси, крупы, снега, града. Осадки в основном выпадают из облаков, но далеко не всякое облако даёт осадки.

    Формы осадков: дождь, морось, снежная крупа, снег, ледяная крупа, град.

    Образование осадков. Капельки воды и кристаллики льда в облаке очень малы, они легко удерживаются воздухом, даже слабые восходящие токи увлекают их вверх. Для образования осадков необходимо укрупнение облач­ных элементов, чтобы они смогли преодолеть восходящие токи. Укрупнение происходит, 1) в результате слияния капелек и сцепления кристаллов; 2) в ре­зультате испарения одних элементов облака, диффузного переноса и конден­сации водяного пара на других элементах (особенно в смешанных облаках). По происхождению различают осадки:1) конвективные (образуются в жар­ком поясе-от южного до северного тропика), 2) орографические и 3) фронтальные (образуются при встрече воздушных масс с разной t 0 и др. фи­зическими свойствами, выпадают из теплого воздуха в умеренном и холод­ном поясах).

    Характер выпадения осадков зависит от условий их образования: моро­сящие, ливневые и обложные осадки.

    Характеристики режима осадков. Суточный ход осадков (совпадает с суточным ходом облачности) и его типы: 1) континентальный (имеет 2 мак­симума - утром и после полудня, и 2 минимума - ночью и перед полу­днем) и 2) морской (береговой) - 1 максимум (ночью) и 1 минимум (днём).

    Годовой ход осадков, т.е. изменение количества осадков по месяцам в различных климатических поясах различен. Основные типы годового хода осадков: 1) экваториальный (осадки выпадают равномерно весь год, max пе­риод равноденствия); 2) муссонный (max - летом, min - зимой - субэквато­риальный климатический пояс и восточные окраины материков в умер. и субтроп.поясах, особенно в Евразии и Северной Америке); 3) средиземно­морский (max - зимой, min - летом; западные окраины материков в субтропи­ческом поясе); 4) континентальный умеренного пояса (в теплый период в 2-3 раза больше, при движении вглубь материка общее количество осадков уменьшается); 5) морской умеренного пояса (выпадают равномерно по сезо­нам, небольшой max в осенне-зимнее время).
























    Назад Вперёд

    Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

    • обеспечить усвоение понятия влажность воздуха;
    • развивать самостоятельность учащихся; мышление; умение делать выводы;развитие практических навыков при работе с физическим оборудованием;
    • показать практическое применение и важность данной физической величины.

    Тип урока: урок изучения нового материала.

    Оборудование:

    • для фронтальной работы: стакан с водой, термометр, кусок марли; нитки, психрометрическая таблица.
    • для демонстраций: психрометр, волосяной и конденсационный гигрометры, груша, спирт.

    Ход урока

    I. Повторение и проверка домашнего задания

    1. Сформулируйте определение процессов парообразования и конденсации.

    2. Какие виды парообразования вы знаете? Чем они отличаются друг от друга?

    3. При какихусловиях происходит испарение жидкости?

    4. От какихфакторов зависит скорость испарения?

    5.Что такое удельнаятеплота парообразования?

    6. На чторасходуется подводимое количество теплоты при парообразовании?

    7. Почему приветрежара переносится легче?

    8. Одинакова ли внутренняя энергия 1 кг воды и пара при температуре 100 о С

    9. Почему вода в бутылке, плотно закрытой пробкой, не испаряется?

    II. Изучение нового материала

    Водяной пар в воздухе, несмотря на огромные поверхности рек, озер, океановне является насыщенным, атмосфера открытый сосуд. Движение воздушных масс приводит к тому, что в одних местах в данный момент испарение воды преобладает над конденсацией, а в других наоборот.

    Атмосферный воздух представляет собой смесь различных газов и водяного пара.

    Давление, которое производил бы водяной пар, если бы все остальные газыотсутствовали, называют парциальным давлением (или упругостью) водяного пара.

    За характеристику влажности воздуха может быть принята плотность водяного пара , содержащегося в воздухе. Эту величину называют абсолютной влажностью [г/м 3 ].

    Знания парциального давления водяного пара или абсолютной влажности ничего не говорят, насколько водяной пар далек от насыщения.

    Для этого вводят величину, показывающую, насколько водяной пар при данной температуре близок к насыщению - относительная влажность.

    Относительной влажностью воздуха называют отношение абсолютной влажности воздуха к плотности 0 насыщенного водяного пара при той же температуре, выраженной в процентах.

    Р - парциальное давление при данной температуре;

    Р 0 - давление насыщенного пара при той же температуре;

    Абсолютная влажность;

    0 - плотность насыщенного водяного пара при данной температуре.

    Давление и плотность насыщенного пара при различных температурах можно найти, воспользовавшись специальными таблицами.

    При охлаждении влажного воздуха при постоянном давлении его относительная влажность повышается, чем ниже температура, тем ближе парциальное давление пара в воздухе к давлению насыщенного пара.

    Температура t, до которой должен охладиться воздух, чтобы находящийся в нем пар достиг состояния насыщения (при данной влажности, воздуха и неизменном давлении), называется точкой росы.

    Давление насыщенного водяного пара при температуре воздуха равной точке росы, есть парциальное давление водяного пара, содержащегося в атмосфере. При охлаждении воздуха до точки росы начинается конденсация паров: появляется туман, выпадает роса. Точка росы также характеризует влажностьвоздуха.

    Влажность воздуха можно определить специальными приборами.

    1. Конденсационный гигрометр

    С его помощью определяют точку росы. Это наиболее точный способ изменения относительной влажности.

    2. Волосяной гигрометр

    Его действиеосновано на свойствеобезжиренного человеческого волос а удлиняться при увеличении относительной влажности.

    Применяется втех случаях, когда вопределении влажности воздуха не требуется большой точности.

    3. Психрометр

    Обычно пользуются в тех случаях, когда требуется достаточно точное и быстрое определение влажности воздуха.

    Значение влажности воздуха для живых организмов

    При температуре 20-25°С наиболее благоприятным для жизни человека считается воздух с относительной влажностью от 40% до 60%. Когда окружающая среда имеет температуру более высокую, чем температура тела человека, то происходит усиленное потоотделение. Обильное выделение пота ведет к охлаждению организма. Однако такое потоотделение является значительной нагрузкой для человека.

    Относительная влажность ниже 40% при нормальной температуре воздуха также вредна, так как приводит к усиленной потере влаги организмов, что ведет к его обезвоживанию. Особенно низкая влажность воздуха в помещениях в зимнее время; она составляет 10-20%. При низкой влажности воздуха происходит быстрое испарение влаги с поверхности и высыхание слизистой оболочки носа, гортани, легких, что может привести к ухудшению самочувствия. Также при низкой влажности воздуха во внешней среде дольше сохраняются патогенные микроорганизмы, а на поверхности предметов скапливается больше статического заряда. Поэтому в зимнее время в жилых помещениях производят увлажнение с помощью пористых увлажнителей. Хорошими увлажнителями являются растения.

    Если относительная влажность высокая, то мы говорим, что воздух влажный и удушливый . Высокая влажность воздуха действует угнетающе, поскольку испарение происходит очень медленно. Концентрация паров воды в воздухе в этом случае высока, вследствие чего молекулы из воздуха возвращаются в жидкость почти так же быстро, как и испаряются. Если пот с тела испаряется медленно, то тело охлаждается очень слабо, и мы чувствуем себя не совсем комфортно. При относительной влажности 100% испарение вообще не может происходить - при таких условиях мокрая одежда или влажная кожа никогда не высохнут.

    Из курса биологии вы знаете о разнообразных приспособлениях растений в засушливых местностях. Но растения приспособлены и к высокой влажности воздуха. Так, родина Монстеры - влажный экваториальный лес Монстера при относительной влажности, близкой к 100%, "плачет", она удаляет избытки влаги через отверстия в листьях - гидатоды. В современных зданиях производится кондиционирование воздуха создание и поддержание в закрытых помещениях воздушной среды, наиболееблагоприятной для самочувствия людей. При этом автоматически регулируется температура, влажность, состав воздуха.

    Исключительное значение для образования заморозка имеет влажность воздуха. Если влажность велика и воздух близок к насыщению парами, то при понижении температуры воздух может стать насыщенным и начнет выпадать роса.Но при конденсации водяных паров выделяется энергия (удельная теплота парообразования при температуре, близкой к 0 °С, равна 2490 кДж/кг), поэтому воздух у поверхности почвы при образовании росы не будет охлаждаться ниже точки росы и вероятность наступления заморозка уменьшится. Вероятность заморозка зависит, во-первых, от быстроты понижения температуры и,

    Во-вторых, от влажности воздуха. Достаточно знать одно из этих данных, чтобы более или менее точно предсказать вероятность заморозка.

    Вопросы на повторение:

    1. Что понимается под влажностью воздуха?
    2. Что называют абсолютной влажностью воздуха? Какая формула выражает смысл этого понятия? В каких единицах ее выражают?
    3. Что такое упругость водяного пара?
    4. Что называют относительной влажностью воздуха? Какие формулы выражают смысл этого понятия в физике и метеорологии? В каких единицах ее выражают?
    5. Относительная влажность воздуха 70%, что это значит?
    6. Что называют точкой росы?

    С помощью каких приборов определяют влажность воздуха? Каковы субъективные ощущения влажности воздуха человеком? Начертив рисунок, объясните устройство и принцип работы волосяного и конденсационного гигрометров и психрометра.

    Лабораторная работа №4 "Измерение относительной влажности воздуха"

    Цель:научиться определять относительную влажность воздуха, развить практические навыи при работе с физическим оборудованием.

    Оборудование: термометр, марлевый бинт, вода, психометрическая таблица

    Ход урока

    Перед выполнением работы необходимо обратить внимание учащихся не только на содержание и ход выполнения работы, но и на правила обращения с термометрами и стеклянными сосудами. Нужно напомнить, что все время, пока термометр не используется для измерений, он должен находиться в футляре. При измерении температуры термометр следует держать за верхний край. Это позволит определить температуру с наибольшей точностью.

    Первые измерения температуры следует провести сухим термометром Эта температура в аудитории во время работы не изменится.

    Для измерения температуры влажным термометром лучше в качестве ткани взять кусочек марли. Марля очень хорошо впитывает и перемещает воду от влажного края к сухому.

    Используя психрометрическую таблицу, легко определить значение относительной влажности.

    Пусть t c = h = 22 °С, t m = t 2 = 19 °С. Тогда t = t c - 1 Ш = 3 °С.

    По таблице находим относительную влажность. В данном случае она равна 76%.

    Для сравнения можно измерить относительную влажность воздуха на улице. Для этого группу из двух-трех учеников, успешно справившихся с основной частью работы, можно попросить провести аналогичные измерения на улице. Это должно занять не более 5 минут. Полученное значение влажности можно сравнить с влажностью в классе.

    Итоги работы подводят в выводах. В них следует отметить не только формальные значения итоговых результатов, но и указать причины, которые приводят к погрешностям.

    III. Решение задач

    Так как данная лабораторная работа достаточно проста по содержанию и невелика по объему, оставшуюся часть урока можно посвятить решению задач по изучаемой теме. Для решения задач не обязательно, чтобы все ученики стали решать их одновременно. По мере выполнения работы они могут получать задания индивидуально.

    Можно предложить следующие простые задачи:

    На улице идет холодный осенний дождь. В каком случае быстрее высохнет белье, развешенное на кухне: когда форточка открыта, или когда закрыта? Почему?

    Влажность воздуха равна 78%, а показание сухого термометра равно 12 °С. Какую температуру показывает влажный термометр? (Ответ: 10 °С.)

    Разность в показаниях сухого и влажного термометров равна 4 °С. Относительная влажность воздуха 60%. Чему равны показания сухого и влажного термометра? (Ответ: t c -l9 °С, t m = 10 °С.)

    Домашнее задание

    • Повторить параграф 17 учебника.
    • Задание № 3. с. 43.

    Сообщения учащихся о роли испарения в жизни растений и животных.

    Испарение в жизни растений

    Для нормального существования растительной клетки необходимо ее насыщение водой. Для водорослей оно является естественным следствием условий их существования, у растений суши достигается в результате двух противоположных процессов: поглощения воды корнями и испарения. Для успешного фотосинтеза хло-!рофиллоносные клетки наземных растений должны поддерживать самое тесное соприкосновение с окружающей атмосферой, снабжающей их необходимым для них углекислым газом; однако это тесное соприкосновение неизбежно приводит к тому, что насыщающая клетки вода непрерывно испаряется в окружающее пространство, и та же солнечная энергия, которая доставляет растению необходимую для фотосинтеза энергию, поглощаясь хлорофиллом, способствует нагреванию листа, а тем самым и усилению процесса Испарения.

    Очень немногие, и притом низкоорганизованные, растения, нииример мхи и лишайники, могут выдерживать длительные перерывы в водоснабжении и переносить это время в состоянии полного иыеыхания. Из высших растений к этому способны лишь некоторые представители скальной и пустынной флоры, например осока, распространенная в песках Каракумов. Для громадного большинства ш.кших растений такое высыхание было бы смертельно, а потому │сход воды у них примерно равен ее приходу.

    Чтобы представить себе масштабы испарения воды растениями, приведем такой пример: за один вегетационный период одно Цветение подсолнечника или кукурузы испаряет до 200 кг и более воды, т. е. солидных размеров бочку! При таком энергичном расходе требуется не менее энергичное добывание воды. Для этого (Мужит корневая система, размеры которой огромны счеты числа корней и корневых волосков для озимой ржи дали следующие удивительные цифры: корней оказалось почти четырпл дцать миллионов, общая длина всех корней 600 км, а их общая по верхность около 225 м 2 . На этих корнях было около 15 миллиардом корневых волосков общей площадью в 400 м 2 .

    Количество воды, расходуемое растением в течение своем жизни, в большой степени зависит от климата. В жарком сухом климате растения потребляют не меньше, а иногда даже больше во ды, чем в климате более влажном, у этих растений более развита корневая система и меньшее развитие имеет листовая поверхносп. Меньше всего расходуют воду растения сырых, тенистых тропиче ских лесов, берегов водоемов: у них тонкие широкие листья, слабые корневая и проводящая системы. У растений засушливых местно стей, где воды в почве очень мало, а воздух горяч и сух, наблюда ются разнообразные приемы приспособления к этим суровым условиям. Интересны растения пустынь. Это, например, кактусы растения с толстыми мясистыми стволами, листья которых превра тились в колючки. У них незначительная поверхность при большом объеме, толстые покровы, мало проницаемые для воды и водяного пара, с немногочисленными, почти всегда закрытыми устьицами. Поэтому даже в сильную жару кактусы испаряют мало воды.

    У других растений зоны пустынь (верблюжьей колючки, степной люцерны, полыни) тонкие листья с широко открытыми устьицами, которые энергично ассимилируют и испаряют, за счет чего значительно снижается температура листьев. Часто листья бывают покрыты густым слоем серых или белых волосков, представляющих как бы полупрозрачный экран, защищающий растения от перегревания и снижающий интенсивность испарения.

    Многие растения пустынь (ковыль, перекати-поле, вереск) имеют жесткие, кожистые листья. Такие растения способны переносить длительное завядание. В это время их листья скручиваются в трубку, причем устьица находятся внутри нее.

    Условия испарения зимой резко меняются. Из мерзлой почвы корни не могут всасывать воду. Поэтому за счет листопада уменьшается испарение влаги растением. Кроме того, при отсутствии листьев меньше снега задерживается на кроне, что предохраняет растения от механических повреждений.

    Роль процессов испарения для животных организмов

    Испарение - это наиболее легко регулируемый способ меньшения внутренней энергии. Всякие условия, затрудняющие спарение, нарушают регулирование теплоотдачи организма. Так, ожаная, резиновая, клеенчатая, синтетическая одежда затрудняет егулировку температуры тела.

    Для терморегуляции организма важную роль играет потоот-еление, оно обеспечивает постоянство температуры тела человека ли животного. За счет испарения пота уменьшается внутренняя нергия, благодаря этому организм охлаждается.

    Нормальным для жизни человека считается воздух с относительной влажностью от 40 до 60%. Когда окружающая среда имеет температуру более высокую, чем тело человека, то происходит усиленное. Обильное выделение пота ведет к охлаждению организма, помогает работать в условиях высокой температуры. Однако такое активное потоотделение является значительной нагрузкой для человека! Если еще при этом абсолютная влажность высока, то жить и работать становится еще тяжелее (влажные тропики, некоторые цеха, например красильные).

    Относительная влажность ниже 40% при нормальной температуре воздуха тоже вредна, так как приводит к усиленной потере влаги организмом, что ведет к его обезвоживанию.

    Очень интересны с точки зрения терморегуляции и роли процессов испарения некоторые живые существа. Известно, например, что верблюд может две недели не пить. Объясняется это тем, что он очень экономно расходует воду. Верблюд почти не потеет даже в сорокаградусную жару. Его тело покрыто густой и плотной шерстью - шерсть спасает от перегрева (на спине верблюда в знойный полдень она нагрета до восьмидесяти градусов, а кожа под ней -лишь до сорока!). Шерсть препятствует и испарению влаги из организма (у стриженого верблюда потоотделение возрастает на 50%). Верблюд никогда, даже самый сильный зной, не раскрывает рта: ведь со слизистой оболочки ротовой полости, если открыть широко рот, испаряете много воды! Частота дыхания верблюда очень низка -8 раз минуту. За счет этого меньше воды уходит из организма с воздухом. В жару, однако, частота дыхания его увеличивается до 16 раз в минуту. (Сравните: бык при этих же условиях дышит 250, а собака - 300-400 раз в минуту.) Кроме того, температура тела верблюда понижается ночью до 34°, а днем, в жару, повышается до 40-41°. Это очень важно для экономии воды. У верблюда имеется так же очень любопытное приспособление для сохранения воды впрок Известно, что из жира, когда он "сгорает" в организме, получается много воды - 107 г из 100 г жира. Таким образом, из своих горбои верблюд при необходимости может извлечь до полцентнера воды.

    С точки зрения экономии в расходовании воды еще более удивительны американские тушканчиковые прыгуны (кенгуровые крысы). Они вообще никогда не пьют. Кенгуровые крысы живут и пустыне Аризона и грызут семена и сухие травы. Почти вся вода, которая имеется в их теле, эндогенная, т.е. получается в клетках при переваривании пищи. Опыты показали, что из 100 г перловой кру пы, которой кормили кенгуровых крыс, они получали, переварив и окислив ее, 54 г воды!

    В теплорегуляции птиц большую роль играют воздушные мешки. В жаркое время с внутренней поверхности воздушных меш ков испаряется влага, что способствует охлаждению организма. II связи с этим птица в жаркую погоду открывает клюв. (Кац //./> Биофизика на уроках физики. - М.: Просвещение, 1974).

    п. Самостоятельная работа

    Какое количество теплоты выделится мри полном сгорании 20 кг каменного угля? (Ответ: 418 МДж)

    Какое количество теплоты выделится при полном сгорании 50 л метана? Плотность метана примите равной 0,7 кг/м 3 . (Ответ: -1,7 МДж)

    На стаканчике с йогуртом написано: энергетическая ценность 72 ккал. Выразите энергетическую ценность продукта в Дж.

    Теплота сгорания суточного рациона питания для школьников вашего возраста составляет около 1,2 МДж.

    1) Достаточно ли для вас потребление в течение для 100 г жирного творога, 50 г пшеничного хлеба, 50 г говядины и 200 г картофеля. Необходимые дополнительные данные:

    • творог жирный 9755;
    • хлеб пшеничный 9261;
    • говядина 7524;
    • картофель 3776.

    2) Достаточно ли для вас потребление в течение дня 100 г окуня, 50 г свежих огурцов, 200 г винограда, 100 г ржаного хлеба, 20 г подсолнечного масла и 150 г сливочного мороженого.

    Удельная теплота сгорания q x 10 3 , Дж/кг:

    • окунь 3520;
    • огурцы свежие 572;
    • виноград 2400;
    • хлеб ржаной 8884;
    • масло подсолнечное 38900;
    • мороженое сливочное 7498. ,

    (Ответ: 1) Потреблено примерно 2,2 МДж - достаточно; 2) Потреблено к 3,7 МДж - достаточно.)

    При подготовке к урокам в течение двух часов вы тратите около 800 кДж энергии. Восстановите ли вы запас энергии, если выпьете 200 мл обезжиренного молока и съедите 50 г пшеничного хлеба? Плотность обезжиренного молока равна 1036 кг/м 3 . (Ответ: Потреблено примерно 1 МДж - достаточно.)

    Воду из мензурки перелили в сосуд, нагреваемый пламенем спиртовки, и испарили. Рассчитайте массу сгоревшего спирта. Нагреванием сосуда и потерями на нагревание воздуха можно пренебречь. (Ответ: 1,26 г.)

    • Какое количество теплоты выделится при полном сгорании 1 т антрацита? (Ответ: 26,8 . 109 Дж.)
    • Какую массу биогаза надо сжечь, чтобы выделилось 50 МДж теплоты? (Ответ: 2 кг.)
    • Какое количество теплоты выделится при сгорании 5 л мазута. Плотность мазута примите равной 890 кг/м 3 . (Ответ: примерно 173 МДж.)

    На коробке конфет написано: калорийность 100 г 580 ккал. Выразите нилорийность продукта в Дж.

    Изучите этикетки разных пищевых продуктов. Запишите энергети-I, с кую ценность (калорийность) продуктов, выразив ее в джоулях или ка-Юриях (килокалориях).

    При езде на велосипеде за 1 час вы тратите примерно 2 260 000 Дж щергии. Восстановите ли вы запас энергии, если съедите 200 г вишни?



    Похожие статьи