• Технология газовой сварки. Режимы газовой сварки Скорость газовой сварки

    28.08.2023

    При газовой сварке происходят разнообразные процессы: физические, связанные с нагревом и расплавлением металла, формированием шва, а также химические, обусловленные горением, взаимодействием флюса и присадочного материала с расплавленным металлом.

    Основным инструментом газосварщика является сварочное пламя. Оно образуется при сгорании горючего газа в кислороде. От соотношения объемов кислорода и горючего газа в их смеси зависят внешний вид, температура и характер влияния сварочного пламени на расплавленный металл.

    Рассмотрим строение пламени (рис. 7.1). Сварочное пламя имеет три четко различимые области: ядро 7, восстановительную зону 2 и факел 3.

    Рис. 7.1. Строение ацетиленового сварочного пламени и распределение температуры по длине факела: 1 - ядро; 2 - восстановительная зона; 3 - факел

    Ядро пламени представляет собой ярко светящуюся зону, в наружном слое которой сгорают раскаленные частицы углерода, образующиеся при разложении ацетилена.

    Восстановительная зона , более темная, состоит из оксида углерода и водорода, которые раскисляют расплавленный металл, отбирая кислород от его оксидов.

    Факел - периферийная часть пламени - представляет собой зону полного сгорания углеводородов в кислороде окружающей среды.

    В зависимости от соотношения объемов кислорода и ацетилена получают три основных вида сварочного пламени: нормальное, окислительное и науглероживающее (рис. 7.2).

    Рис. 7.2. Виды сварочного пламени: а - нормальное; б - окислительное; в - науглероживающее; 1 - ядро; 2 - восстановительная зона; 3 - факел

    Нормальное сварочное пламя образуется тогда, когда в горелке на один объем кислорода приходится один объем ацетилена. В нормальном пламени ярко выражены все три зоны.

    Ядро имеет резко очерченную форму, близкую к цилиндру с ярко светящейся оболочкой. Температура ядра достигает 1000 °С.

    В восстановительной зоне, содержащей продукты неполного сгорания ацетилена, проводят сварку. Температура этой зоны в точке, отстоящей на 3...6 мм от ядра, составляет 3150°С. Факел имеет температуру 1200... 2500 °С.

    Нормальным сварочным пламенем осуществляют сварку сталей всех марок, меди, бронзы и алюминия.

    Окислительное сварочное пламя получают при избытке кислорода, когда в горелку подают на один объем ацетилена более 1,3 объема кислорода. Ядро такого пламени имеет укороченную, конусообразную форму. Оно приобретает менее резкие очертания и более бледную окраску, чем у нормального пламени. Протяженность восстановительной зоны уменьшается по сравнению с нормальным пламенем. Факел имеет синевато-фиолетовую окраску. Горение сопровождается шумом, уровень которого зависит от давления кислорода. Температура окислительного пламени выше, чем у нормального, однако при сварке таким пламенем из-за избытка кислорода образуются пористые и хрупкие швы.

    Окислительное пламя применяют при сварке латуни и пайке твердыми припоями.

    Науглероживающее сварочное пламя получают при избытке ацетилена, когда в горелке на один объем ацетилена приходится не более 0,95 объема кислорода. Ядро такого пламени теряет резкость очертаний, на его конце появляется зеленый венчик, по наличию которого судят об избытке ацетилена. Восстановительная зона существенно светлее, чем у нормального пламени, и почти сливается с ядром. Факел приобретает желтую окраску. При значительном избытке ацетилена пламя коптит. Температура науглероживающего пламени ниже, чем у нормального и окислительного.

    Слегка науглероживающим пламенем сваривают чугун и осуществляют наплавку твердых сплавов.

    Газосварщик регулирует и устанавливает вид сварочного пламени «на глаз».

    При выполнении сварочных работ необходимо, чтобы сварочное пламя обладало тепловой мощностью, достаточной для расплавления свариваемого металла.

    Мощность пламени при газовой сварке зависит от расхода ацетилена - объема газа, проходящего за один час через горелку. Мощность регулируют подбором наконечника горелки и изменением положения ацетиленового вентиля. Мощность пламени выбирают в соответствии с толщиной свариваемого металла и его теплофизическими свойствами.

    Расход ацетилена, дм 3 /ч, необходимый для расплавления слоя свариваемого металла толщиной 1 мм, устанавливают на практике. Так, слой низкоуглеродистой стали толщиной 1 мм расплавляется при расходе ацетилена 100... 130 дм 3 /ч. Чтобы определить расход ацетилена при сварке конкретной детали, нужно умножить расход, соответствующий единичной толщине, на действительную толщину свариваемого металла, мм.

    Пример . При сварке низкоуглеродистой стали толщиной 3 мм минимальный расход ацетилена, дм 3 /ч, составит 100х3 = 300, а максимальный - 130х3 = 390.

    Угол наклона мундштука горелки к поверхности металла зависит в основном от толщины свариваемых листов и от теплофизических свойств металла. Чем больше толщина металла, тем больше угол наклона мундштука горелки. С изменением толщины стали от 1 до 15 мм угол наклона мундштука меняется в пределах 10-80° (рис. 3). Угол наклона мундштука горелки зависит также от температуры плавления и теплопроводности металла. Чем выше температура плавления металла и чем больше его теплопроводность, тем больше угол наклона мундштука. Так, например, при сварке меди угол наклона мундштука может составлять 60-80°, а при сварке свинца или легко воспламеняющегося магниевого сплава ~ 10°. Наклон мундштука горелки может меняться в процессе сварки. В начальный момент сварки и для лучшего прогрева металла и быстрого образования сварочной ванны угол наклона устанавливают наибольшим (80-90°); в процессе сварки величина угла соответствует толщине и роду свариваемого металла.

    Рис. 3.

    Мощность пламени зависит от толщины металла и его теплофизических свойств. Чем больше толщина металла и чем выше его температура плавления и теплопроводность, тем большую мощность пламени необходимо выбирать для его сварки. При сварке низкоуглеродистых и низколегированных сталей расход ацетилена устанавливают по формулам:

    при правом способе сварки

    где д - толщина свариваемой стали, мм.

    При сварке чугуна, латуни, бронзы и алюминиевых сплавов мощность пламени устанавливается примерно такая же, как и для сварки стали.

    При сварке же меди, обладающей весьма высокой теплопроводностью и достаточно высокой температурой плавления, мощность пламени, если процесс сварки ведут одной горелкой, подбирают по формуле

    В процессе газовой сварки происходит нагрев мундштука горелки и, как следствие, увеличивается содержание кислорода в газовой смеси, что приводит часто к окислению металла сварочной ванны. Поэтому в начальный момент работы необходимое соотношение газов в смеси устанавливают при в0=1,05ч1,1. По мере нагревания мундштука горелки количество кислорода постепенно увеличивается до в0=1,2ч1,3, после чего сварщик охлаждает горелку и вновь регулирует пламя.

    Диаметр присадочной проволоки зависит от способа газовой сварки. Для левого способа он составляет большую величину, чем для правого. Диаметр присадочной проволоки d для сварки стали толщиной 6 до 15 мм может быть определен по следующим формулам:

    для левого способа

    для правого способа

    При сварке стали толщиной более 15 мм диаметр проволоки выбирают равным 6-8 мм. Движения горелкой и присадочной проволокой оказывают значительное влияние на процесс формирования сварного шва. При сварке в нижнем положении правым способом без разделки кромок при толщине стали более 3 мм или при сварке стали относительно большой толщины левым способом (с разделкой кромок или без нее) наиболее распространенные движения горелкой и концом присадочной проволоки показаны на рис. 4. В этом случае концом присадочной проволоки совершают движения, обратные движениям сварочной горелки. При выполнении угловых или валиковых швов для получения нормальной формы валика горелке и присадочной проволоке придают движения, показанные на рис. 5. В этом случае сварщик быстро перемещает пламя и конец проволоки посредине шва и задерживает их по краям.

    Рис. 4.

    Рис. 5.

    При сварке правым способом металла толщиной 5 мм пламя горелки углубляется в разделку шва (рис. 6) и перемещается вдоль шва без колебательных движений.

    Рис. 6.

    При сварке стали малой толщины без отбортовки кромок, когда процесс сварки ведется с присадочной проволокой, получил распространение способ последовательного образования сварочных ванночек (рис. 7). При этом каждая последующая ванночка перекрывает предыдущую на 1/3 ее диаметра.

    Рис. 7.

    В этом случае процесс сварки ведут левым способом. Для получения гладкой и ровной поверхности шва требуется соблюдение двух основных условий: конец присадочной проволоки во избежание окисления не следует выводить за пределы средней зоны пламени; ядро пламени при приближении его к сварочной ванне для предотвращения науглероживания металла шва не должно касаться ее поверхности. Способ последовательного образования сварочных ванночек, или, как его иногда называют, «сварка каплями», позволяет получать весьма высокое качество сварного шва.


    Газовая сварка сравнительно проста, не требует сложного, дорогого оборудования и источника электроэнергии.

    Недостатком газовой сварки является меньшая по сравнению с дуговой скорость нагрева металла и большая зона теплового воздействия на металл. При газовой сварке концентрация тепла меньше, а коробление свариваемых деталей больше.

    Вследствие сравнительно медленного нагрева металла пламенем и невысокой концентрации тепла производительность газовой сварки снижается с увеличением толщины свариваемого металла. Например, при толщине стали 1 мм скорость газовой сварки составляет около 10 м/ч, при толщине 10 мм - только 2 м/ч. Поэтому газовая сварка стали толщиной свыше 6 мм менее производительна, чем дуговая сварка.

    Стоимость ацетилена и кислорода выше стоимости электроэнергии, поэтому газовая сварка обходится дороже электрической. К недостаткам газовой сварки относится также взрывоопасность и пожароопасность при нарушении правил обращения с карбидом кальция, горючими газами и жидкостями, кислородом, баллонами со сжатыми газами и ацетиленовыми генераторами. Газовую сварку применяют при следующих работах: изготовлении и ремонте изделий из стали толщиной 1-3 мм; сварке сосудов и резервуаров небольшой емкости, заварке трещин, вварке заплат и пр.; ремонте литых изделий из чугуна, бронзы, силумина; сварке стыков труб малых и средних диаметров; изготовлении изделий из алюминия и его сплавов, меди, латуни и свинца; изготовлении узлов конструкций из тонкостенных труб; наплавке латуни на детали из стали и чугуна; соединении ковкого и высокопрочного чугуна с применением присадочных прутков из латуни и бронзы, низкотемпературной сварке чугуна.

    Газовой сваркой можно соединять почти все металлы, применяемые в технике. Чугун, медь, латунь, свинец легче поддаются газовой сварке, чем дуговой.

    ТЕХНИКА ГАЗОВОЙ СВАРКИ

    Газовой сваркой можно выполнять нижние, горизонтальные, вертикальные и потолочные швы. Наиболее трудно выполнять потолочные швы, так как в этом случае сварщик должен поддерживать и распределять по шву жидкий металл, используя давление газов пламени. Наиболее часто газовой сваркой выполняют стыковые соединения, реже угловые и торцовые соединения. Газовой сваркой не рекомендуется выполнять соединения внахлестку и тавровые, так как они требуют интенсивного нагрева металла и сопровождаются повышенным короблением изделия.

    Отбортованные соединения тонкого металла сваривают без присадочной проволоки. Применяют прерывистые и непрерывные швы, а также швы однослойные и многослойные. Перед сваркой кромки тщательно очищают от следов масла, краски, ржавчины, окалины, влаги и прочих загрязнений.

    В табл. 10 показана подготовка кромок при газовой сварке углеродистых сталей стыковыми швами.

    ПЕРЕМЕЩЕНИЕ ГОРЕЛКИ ПРИ СВАРКЕ

    Пламя горелки направляют на свариваемый металл так, чтобы кромки металла находились в восстановительной зоне, на расстоянии 2—6 мм от конца ядра. Касаться расплавленного металла концом ядра нельзя, так как это вызовет науглероживание металла ванны. Конец присадочной проволоки также должен находиться в восстановительной зоне или быть погруженным в ванну расплавленного металла. В том месте, куда направлен конец ядра пламени, жидкий металл давлением газов слегка раздувается в стороны, образуя углубление в сварочной ванне.

    Скорость нагрева металла при газовой сварке можно регулировать, изменяя угол наклона мундштука к поверхности металла. Чем больше этот угол, тем больше тепла передается от пламени металлу и тем быстрее он будет нагреваться. При сварке толстого или хорошо проводящего тепло металла (например, красной меди) угол наклона мундштука а берут больше, чем при сварке тонкого или с низкой теплопроводностью. На рис. 86, а показаны углы наклона мундштука, рекомендуемые при левой (см. § 4 этой главы) сварке стали различной толщины.

    На рис. 86, б показаны способы перемещения мундштука по шву. Основным является перемещение мундштука вдоль шва. Поперечные и круговые движения являются вспомогательными и служат для регулирования скорости прогрева и расплавления кромок, а также способствуют образованию нужной формы сварного шва.

    Способ 4 (см. рис. 86, б) применяют при сварке тонкого металла, способы 2 и 3 - при сварке металла средней толщины. Во время сварки нужно стремиться к тому, чтобы металл ванны всегда был защищен от окружающего воздуха газами восстановительной зоны пламени. Поэтому способ 1, при котором пламя периодически отводится в сторону, применять не рекомендуется, так как при нем возможно окисление металла кислородом воздуха.

    ОСНОВНЫЕ СПОСОБЫ ГАЗОВОЙ СВАРКИ

    Левая сварка (рис. 87, а). Этот способ наиболее распространен. Его применяют при сварке тонких и легкоплавких металлов. Горелку перемещают справа налево, а присадочную проволоку ведут впереди пламени, которое направляют на несваренный участок шва. На рис. 87, а внизу показана схема движения мундштука и проволоки при левом способе сварки. Мощность пламени при левой сварке берут от 100 до 130 дм 3 ацетилена в час на 1 мм толщины металла (стали).

    Правая сварка (рис. 87, б). Горелку ведут слева направо, присадочную проволоку перемещают вслед за горелкой. Пламя направляют на конец проволоки и сваренный участок шва. Поперечные колебательные движения производят не так часто, как при левой сварке. Мундштуком делают незначительные поперечные колебания; при сварке металла толщиной менее 8 мм мундштук передвигают вдоль оси шва без поперечных движений. Конец проволоки держат погруженным в сварочную ванну и перемешивают им жидкий металл, чем облегчается удаление окислов и шлаков. Тепло пламени рассеивается в меньшей степени и используется лучше, чем при левой сварке. Поэтому при правой сварке угол раскрытия шва делают не 90°, а 60-70°, что уменьшает количество наплавляемого металла, расход проволоки и коробление изделия от усадки металла шва.

    Правой сваркой целесообразно соединять металл толщиной свыше 3 мм, а также металл высокой теплопроводности с разделкой кромок, как, например, красную медь. Качество шва при правой сварке выше, чем при левой, потому что расплавленный металл лучше защищен пламенем, которое одновременно отжигает наплавленный металл и замедляет его охлаждение. Вследствие лучшего использования тепла правая сварка металла больших толщин экономичнее и производительнее левой — скорость правой сварки на 10—20% выше, а экономия газов составляет 10-15%.

    Правой сваркой соединяют сталь толщиной до 6 мм без скоса кромок, с полным проваром, без подварки с обратной стороны. Мощность пламени при правой сварке берут от 120 до 150 дм 3 ацетилена в час на 1 мм толщины металла (стали). Мундштук должен быть наклонен к свариваемому металлу под углом не менее 40°.

    При правой сварке рекомендуется применять присадочную проволоку диаметром, равным половине толщины свариваемого металла. При левой сварке пользуются проволокой диаметром на 1 мм больше, чем при правой сварке. Проволока диаметром более 6—8 мм при газовой сварке не применяется.

    Сварка сквозным валиком (рис. 88). Листы устанавливают вертикально с зазором, равным половине толщины листа. Пламенем горелки расплавляют кромки, образуя круглое отверстие, нижнюю часть которого заплавляют присадочным металлом на всю толщину свариваемого металла. Затем перемещают пламя выше, оплавляя верхнюю кромку отверстия и накладывая следующий слой металла на нижнюю сторону отверстия, и так до тех пор, пока не будет сварен весь шов. Шов получается в виде сквозного валика, соединяющего свариваемые листы. Металл шва получается плотным, без пор, раковин и шлаковых включений.

    Сварка ванночками. Этим способом сваривают стыковые и угловые соединения металла небольшой толщины (менее 3 мм) с присадочной проволокой. Когда на шве образуется ванночка диаметром 4-5 мм, сварщик вводит в нее конец проволоки и, расплавив небольшое количество ее, перемещает конец проволоки в темную, восстановительную часть пламени. При этом он делает мундштуком круговое движение, перемещая его на следующий участок шва. Новая ванночка должна перекрывать предыдущую на 1/3 диаметра. Конец проволоки во избежание окисления нужно держать в восстановительной зоне пламени, а ядро пламени не должно погружаться в ванночку во избежание науглероживания металла шва. Сваренные этим способом (облегченными швами) тонкие листы и трубы из малоуглеродистой и низколегированной стали дают соединения отличного качества.

    Многослойная газовая сварка. Этот способ сварки имеет ряд преимуществ по сравнению с однослойной: обеспечивается меньшая зона нагрева металла; достигается отжиг нижележащих слоев при наплавке последующих; обеспечивается возможность проковки каждого слоя шва перед наложением следующего. Все это улучшает качество металла шва. Однако многослойная сварка менее производительна и требует большего расхода газов, чем однослойная, поэтому ее применяют только при изготовлении ответственных изделий. Сварку ведут короткими участками. При наложении слоев нужно следить за тем, чтобы стыки швов в различных слоях не совпадали. Перед наложением нового слоя нужно проволочной щеткой тщательно очистить поверхность предыдущего от окалины и шлаков.

    Сварка окислительным пламенем. Этим способом сваривают малоуглеродистые стали. Сварку ведут окислительным пламенем, имеющим состав

    Для раскисления образующихся при этом в сварочной ванне окислов железа применяют проволоки марок Св-12ГС, Св-08Г и Св-08Г2С по ГОСТ 2246— 60, содержащие повышенные количества марганца и кремния, которые являются раскислителями. Данный способ повышает производительность на 10—15%.

    Сварка пропан - бутан-кислородным пламенем . Сварка ведется при повышенном содержании кислорода в смеси

    с целью повышения температуры пламени и увеличения провара и жидкотекучести ванны. Для раскисления металла шва применяют проволоки Св-12ГС, Св-08Г, Св-08Г2С, а также проволоку Св-15ГЮ (0,5—0,8% алюминия и 1 - 1,4% марганца) по ГОСТ.

    Исследованиями А. И. Шашкова, Ю. И. Некрасова и С. С.Ваксман установлена возможность использования в данном случае обычной малоуглеродистой присадочной проволоки Св-08 с раскисляющим покрытием, содержащим 50% ферромарганца и 50% ферросилиция, разведенного на жидком стекле. Вес покрытия (без учета веса жидкого стекла) составляет 2,8—3,5% к весу проволоки. Толщина покрытия: 0,4-0,6 мм при использовании проволоки диаметром 3 мм и 0,5—0,8 мм при диаметре 4 мм. Расход пропана 60-80 л/ч на 1 мм толщины стали, в = 3,5, угол наклона прутка к плоскости металла составляет 30-45°, угол разделки кромок 90°, расстояние от ядра до прутка 1,5—2 мм, до металла 6-8 мм. Этим способом можно сваривать сталь толщиной до 12 мм. Лучшие результаты получены при сварке стали толщиной 3-4 мм. Проволока Св-08 с указанным покрытием является полноценным заменителем более дефицитных марок проволоки с марганцем и кремнием при сварке пропан-бутаном.

    Особенности сварки различных швов. Горизонтальные швы сваривают правым способом (рис. 89, а). Иногда сварку ведут справа налево, держа конец проволоки сверху, а мундштук снизу ванны. Сварочную ванну располагают под некоторым углом к оси шва. При этом облегчается формирование шва, а металл ванны удерживается от стекания.

    Вертикальные и наклонные швы сваривают снизу вверх левым способом (рис. 89, б). При толщине металла более 5 мм шов сваривают двойным валиком.

    При сварке потолочных швов (рис. 89, в) кромки нагревают до начала оплавления (запотевания) и в этот момент вводят в ванну присадочную проволоку, конец которой быстро оплавляют. Металл ванны удерживается от стекания вниз прутком и давлением газов пламени, которое достигает 100-120 гс/см 2 . Пруток держат под небольшим углом к свариваемому металлу. Сварку ведут правым способом. Рекомендуется применять многослойные швы, свариваемые в несколько проходов.

    Сварку металла толщиной менее 3 мм с отбортованными кромками без присадочного металла производят спиралеобразными (рис. 89, г) или зигзагообразными (рис. 89, д) движениями мундштука.

    Администрация Общая оценка статьи: Опубликовано: 2011.05.31

    Такому способу соединения металлических деталей, как газовая сварка, уже более сотни лет. На протяжении этого времени данная технология продолжает успешно совершенствоваться, хотя другие методы сварки, в которых используется электрическая дуга, развиваются более активно и вытесняют сварку, в которой используется газовая горелка.

    Плюсы и минусы газовой сварки

    Такой метод соединения металлов, как газовая сварка, предполагает плавление соединяемых материалов, в результате чего формируется гомогенная структура. Горение газа, за счет которого и осуществляется нагрев и расплав металла, обеспечивается за счет введения в газовую смесь чистого кислорода. Такой метод соединения металлов отличается целым рядом преимуществ.

    • Этот способ сварки не требует использования сложного оборудования (сварочного инвертора или полуавтоматического аппарата).
    • Все расходные материалы для осуществления такой сварки несложно приобрести.
    • Газовая сварка (соответственно, и газовая сварка труб) может выполняться даже без мощного источника энергии и порой без специальных защитных средств.
    • Процесс такой сварки хорошо поддается регулированию: можно устанавливать требуемую мощность пламени горелки, контролировать степень нагрева металла.

    У данного метода есть и недостатки.

    • Металл нагревается очень медленно, в отличие от использования электрической дуги.
    • Зона тепла, которая формируется газовой горелкой, является очень широкой.
    • Очень сложно концентрировать тепло, создаваемое газовой горелкой, оно является более рассеянным, по сравнению с электродуговым способом.
    • Газовую сварку можно отнести к достаточно дорогостоящим методам соединения металлов, если сравнивать ее с . Стоимость затраченного кислорода и ацетилена значительно перекрывает цену электричества, затрачиваемого для сварки однотипных деталей.
    • При сварке толстых металлических деталей значительно снижается скорость выполнения соединения. Обусловлено это тем, что концентрация тепла при использовании газовой горелки очень низкая.
    • Газовая сварка плохо поддается автоматизации. Механизировать можно лишь процесс газовой сварки тонкостенных труб или резервуаров, который выполняется с использованием многопламенной горелкой.

    Материалы для выполнения сварки с использованием газа

    Технология газовой сварки предполагает использование различных типов газов, выбор которых зависит от целого ряда факторов.

    Одним из газов, используемых для сварки, является кислород. Характеризуется этот газ отсутствием цвета и запаха, он выступает в качестве катализатора, активизируя процессы плавления соединяемого или разрезаемого материала.

    Для того чтобы хранить и транспортировать кислород, используются специальные баллоны, в которых он содержится под постоянным давлением. При контакте с техническим маслом кислород может воспламениться, поэтому следует исключить саму возможность такого контакта. Баллоны, в которых содержится кислород, необходимо хранить в помещениях, защищенных от источников тепла и солнечного света.

    Получают сварочный кислород путем его выделения из обычного воздуха, для чего используются специальные устройства. В зависимости от степени своей чистоты кислород бывает трех типов: высший (99,5%), первый (99,2%) и второй (98,5%) сорт.

    Для различных манипуляций с металлами (сварки и резки) также применяется бесцветный газ ацетилен C2H2. При определенных условиях (давлении, превышающем 1,5 кг/см2 и температуре свыше 400 градусов) данный газ может самопроизвольно взорваться. Получают ацетилен при взаимодействии карбида кальция и воды.

    Преимущество использования ацетилена при сварке металлов заключается в том, что температура его горения позволяет без проблем осуществлять этот процесс. Между тем использование более дешевых газов (водород, метан, пропан, керосиновые пары) не дает возможности получить такую высокую температуру горения.

    Проволока и флюс для выполнения сварки

    Для осуществления сварки металлов, кроме газа, необходимы также . Именно за счет этих материалов создается сварочный шов, формируются все его характеристики. Проволока, которая используется для сварки, должна быть чистой, без признаков коррозии и краски на ее поверхности. В отдельных случаях в качестве такой проволоки можно использовать полоску того же металла, который подвергается свариванию. Для того чтобы обеспечить защиту сварочной ванны от внешних факторов, необходимо использовать специальный флюс. В качестве такого флюса часто используются борная кислота и бура, которые наносятся непосредственно на поверхность свариваемого металла или на используемую для сварки проволоку. Без флюса может выполняться газовая , а при соединении деталей из алюминия, меди, магния и их сплавов такая защита необходима.

    Оборудование для газовой сварки

    Технология газовой сварки предполагает использование определенного оборудования.

    Водяной затвор

    Водяной затвор необходим для обеспечения защиты всех элементов оборудования (генератор ацетилена, трубы) от обратной тяги огня из горелки. Такой затвор, вода в котором должна находиться на определенном уровне, размещается между газовой горелкой и генератором ацетилена.

    Баллон, в котором содержится газ

    Такие баллоны окрашиваются разной краской в зависимости от того, какой газ в них планируется хранить. Между тем верхняя часть баллона не красится, чтобы исключить контакт газа с компонентами краски. Следует также иметь в виду, что на баллоны, в которых хранится ацетилен, нельзя устанавливать вентили из меди, так как это может привести к взрыву газа.

    Редуктор

    Он используется для снижения давления газа, выходящего из баллона. Редукторы могут быть прямого или обратного действия, а для сжиженного газа используются модели с оребрением, которые исключают его вымерзание при выходе.

    Специальные шланги

    Газовую сварку невозможно выполнять без использования специальных шлангов, по которым может подаваться как газ, так и горючие жидкости. Такие шланги делятся на три категории, маркируемые 1) красной полосой (работают при давлении до 6 атмосфер), 2) желтой полосой (для подачи горючих жидкостей), 3) синей полосой (работают при давлении до 20 атм).

    Горелка

    Смешивание газов и их горение обеспечивается за счет использования горелки, которая может быть инжекторного и безинжекторного типа. Классифицируются горелки и по своей мощности, которая характеризует количество газа, пропускаемого в единицу времени. Так, бывают горелки большой, средней, малой и микромалой мощности.

    Специальный стол

    Газовую сварку осуществляют на специально обустроенном месте, которое называется постом. По сути, таким местом является стол, который может быть с поворотной или фиксированной столешницей. Этот стол, оснащенный вытяжной вентиляцией и всем необходимым для хранения вспомогательного инструмента, значительно облегчает труд сварщика.

    Особенности выполнения газовой сварки

    Регулировка параметров пламени осуществляется при помощи редуктора, который позволяет менять состав газовой смеси. При помощи редуктора можно получать пламя трех основных типов: восстановительное (используемое для сварки практически всех металлов), окислительное и с повышенным количеством горючего газа. При сварке металлов в расплавленной ванне протекают одновременно два процесса – окисление и восстановление. При этом при сварке алюминия и магния окислительные процессы протекают активнее.

    Сам сварочный шов и участок, прилегающий к нему, характеризуется разными параметрами. Так, участок металла, прилегающий к шву, отличается минимальной прочностью, именно он наиболее склонен к разрушению. Прилегающий к данной зоне металл имеет структуру с крупными зернами.

    Чтобы улучшить качество шва и зоны, которая к нему прилегает, выполняют дополнительный нагрев или так называемую термическую ковку металла.

    Технологии сварки различных металлов имеют свои нюансы.

    • Газовую выполняют с помощью любого газа. В качестве присадочного материала при сварке таких сталей используется проволока из стали, содержащей небольшое количество углерода.
    • Методы сварки выбираются в зависимости от их состава. Так, нержавеющие жаропрочные стали варятся с использованием проволоки, содержащей хром и никель, а отдельные марки требуют применения присадочного материала, дополнительно содержащего молибден.
    • Чугун варится науглероживающим пламенем, которое предотвращает пиролиз кремния и образование зерен хрупкого белого чугуна.
    • Для сварки меди необходимо использовать пламя большей мощности. Кроме того, по причине повышенной текучести меди детали из нее сваривают с минимальным зазором. В качестве присадочного материала используется проволока из меди, а также флюс, который способствует раскислению металла шва.
    • При есть риск улетучивания цинка из ее состава, что может привести к повышенной пористости металла шва. Чтобы избежать этого, в пламя горелки подают больше кислорода, а в качестве присадки используют латунную проволоку.
    • Сварка бронзы осуществляется восстановительным пламенем, которое не выжигает из этого сплава олово, алюминий и кремний. В качестве присадки применяется проволока из бронзы похожего состава, в которой дополнительно содержится кремний, способствующий раскислению металла шва.

    Включает в себя хорошую подготовку деталей под сварку, выбор нужного способа газовой сварки, выбор режимов газовой сварки (необходимую мощность сварочной горелки), диаметра присадочной проволоки и правильное выполнение техники газовой сварки. Необходимо учесть все эти моменты, чтобы получить хорошее качество сварки.

    Диаметр сварочной проволоки выбирают, исходя из толщины свариваемого металла и от выбранного способа сварки. Подробнее о выборе присадочных материалов изложено на странице: "Присадочные материалы для газовой сварки. Выбор сварочной проволоки".

    Подготовка сварных кромок для газовой сварки

    Подготовка сварных кромок включает в себя их очистку от масляных плёнок, лакокрасочных покрытий, от окалины, от грязи и пыли, ржавчины, а также разделку под сварку и их прихватку короткими швами.

    Очистка сварных кромок под газовую сварку

    Под газовую сварку выполняют не только очистку самих сварных кромок, но и участков в непосредственной близости от них. Ширина очищаемой зоны составляет 20-30мм с каждой стороны соединения.

    Для очистки хорошо подходит пламя сварочной горелки. При нагревании горелкой, окалина отходит от металла, а лакокрасочные покрытия и масло сгорают. После этого поверхность сварных кромок и близлежащих участков тщательно зачищают при помощи металлических щёток или наждачной бумаги. Зачистку производят до появления металлического блеска на свариваемых поверхностях. Часто, для очистки, свариваемые детали подвергают дробеструйной или пескоструйной обработке.

    В случае, когда невозможно удалить загрязнения при помощи щёток (например, удаление оксидных плёнок затруднено), сварные кромки и участки возле них очищают при помощи специальных паст на кислотной основе или протравливают в кислоте. После протравки необходимо промыть и высушить кромки.

    Разделка кромок под газовую сварку

    Сварные кромки разделывают, в зависимости от вида сварного соединения. Вид сварного соединения определяется взаимным расположением соединяемых деталей. Для газовой сварки наиболее характерны стыковые сварные соединения.

    Металлы малой толщины (до 2мм) сваривают в стык с отбортовкой кромок и без применения присадочного материала (схема а) на рисунке) или без отбортовки кромок и без зазора (схема б) на рисунке), в таком случае применяют присадочный материал.

    Металл, толщиной от 2мм до 5мм сваривают в стык, не разделывая кромки, но оставляя зазор между ними (схема в) на рисунке). При толщине сварного металла более 5мм, применяют V-образную, или X-образную разделку (схема г) на рисунке). Суммарный угол раскрытия кромок должен составлять 70-90° для обеспечения хорошего провара корня сварного шва.

    Разделку кромок в свариваемых деталях можно выполнять вручную, пневматическим зубилом, на фрезерных станках, или же на специальных кромкострогальных станках. Но экономически целесообразным способом является кислородная резка (ручная или механизированная). При этом окалину и шлак после резки необходимо зачистить до металлического блеска.

    Прихватка кромок свариваемых деталей перед газовой сваркой

    Технология газовой сварки предусматривает прихватку деталей перед сваркой для того, чтобы в процессе сварки металла не допустить изменении положения деталей или появления зазоров между ними.

    Длина прихваток и расстояние между ними определяются толщиной металла, формой и протяжённостью сварного шва. При сваривании деталей небольшой толщины и при небольшой длине сварного шва, прихватки выполняют длиной 5-7мм на расстоянии 70-100мм друг от друга.

    В случае сваривания металла большой толщины и при больших длинах сварных швов, длина прихваток составляет 20-30мм, а рекомендуемое расстояние между прихватками составляет 300-500мм.

    Выбор режимов газовой сварки

    При выборе режимов газовой сварки руководствуются маркой свариваемого металла или сплава и его толщиной. А также типом и назначением свариваемого изделия. К основным характеристикам режима газовой сварки относятся: мощность сварочной горелки, вид газового пламени, марка и диаметр присадочного прутка или проволоки, способ газовой сварки и техника сварки.

    Выбор мощности сварочной горелки

    Тепловая мощность сварочной горелки определяется расходом ацетилена, проходящего через неё. Требуемый расход ацетилена можно определить по формуле:

    Q=AS, где Q - расход ацетилена, л/ч; S - толщина свариваемого металла, мм; А - коэффициент, который вычисляют опытным путём. При сварке углеродистых сталей коэффициент А=100-130л/(ч*мм); при сварке меди А=150 л/(ч*мм), при сварке алюминия А=75 л/(ч*мм).

    Рекомендуемая мощность пламени при правом способе газовой сварки определяется расходом ацетилена 120-150л/ч, а при левом способе сварки расход ацетилена определяют из расчёта 100-130л/ч на миллиметр толщины свариваемого металла.

    Необходимо иметь ввиду, что увеличение расхода ацетилена приводит к повышению мощности сварочной горелки. Но при излишней её мощности возникает риск прожога металла. Мощность должна быть оптимальной и это нужно учитывать.

    Мощность газового пламени регулируется сменными наконечниками, которые идут в комплекте со сварочными горелками.

    Техника газовой сварки. Как варить газовой сваркой?

    От правильной техники газовой сварки зависит и , и её производительность. Техника сварки включает в себя и положение сварочной горелки и направление её движения. Далее разберём оба этих момента чтобы понять, как правильно варить газовой сваркой.

    Положение сварочной горелки при газовой сварке

    Положение определяется её углом наклона по отношению к поверхности свариваемых деталей. На угол наклона мундштука горелки влияет толщина свариваемых деталей и теплопроводность свариваемого металла. При большой толщине металла и при большой его теплопроводности угол наклона горелки рекомендуется увеличивать.

    Большой угол наклона горелки позволяет сконцентрировать нагрев металла в одном месте вследствие подачи большого количества теплоты на небольшой участок. Изменение угла наклона горелки позволяет изменять скорость нагрева металла.

    На рисунке справа показаны рекомендуемые углы наклона мундштука горелки, в зависимости от свариваемой толщины металла. Рекомендуемые в графике углы даны для . При , особенно при сварке меди и при сварке алюминия рекомендуемый угол следует немного увеличить (примерно, на 15°), т.к. эти металлы обладают высокой теплопроводностью.

    В самом начале процесса сварки горелку устанавливают под максимальным углом для того, чтобы обеспечить хороший прогрев металла затем, угол уменьшают до рекомендуемого значения. В конце процесса сварки угол наклона рекомендуется постепенно уменьшать, чтобы более качественно выполнить наплавление кратера и исключить возможные пережоги металла.

    Движение газовой горелки при сварке

    При , мундштук сварочной горелки в двух направлениях: поперечном (это направление перпендикулярно оси шва) и в продольном (вдоль оси шва). Основным движением сварки является продольное движение. Поперечное движения является вспомогательным, но оно необходимо для того, чтобы равномерно прогреть свариваемые кромки и обеспечить нужную ширину сварного шва.

    Способы поперечного перемещения показаны на рисунке слева:

    а) движение с отрывом горелки;
    б) спиралеобразное перемещение;
    в) движение полумесяцем;
    г) волнистый способ перемещения.

    Наплавление металла с помощью потока газового пламени не получило широкого распространения из-за появления больших . Наплавка газовым пламенем получила применение при наплавке литыми твёрдыми сплавами.



    Похожие статьи