• Определить кпд машины. Тепловой двигатель. Второй закон термодинамики. Пути изменения КПД

    11.09.2024

    Рабочее тело, получая некоторое количество теплоты Q 1 от нагревателя, часть этого количества теплоты, по модулю равную |Q2|,отдает холодильнику. Поэтому совершаемая работа не может быть больше A = Q 1 - |Q 2 |. Отношение этой работы к количеству теплоты, полученному расширяющимся газом от нагревателя, называется коэффициентом полезного действия тепловой машины:

    Коэффициент полезного действия тепловой машины, работающей по замкнутому циклу, всегда меньше единицы. Задача теплоэнергетики состоит в том, чтобы сделать КПДкак можно более высоким, т. е. использовать для получения работы как можно большую часть теплоты, полученной от нагревателя. Как этого можно достигнуть?
    Впервые наиболее совершенный циклический процесс, состоящий из изотерм и адиабат, был предложен французским физиком и инженером С. Карно в 1824 г.

    Цикл Карно.

    Допустим, что газ находится в цилиндре, стенки и поршень которого сделаны из теплоизоляционного материала, а дно - из материала с высокой теплопроводностью. Объем, занимаемый газом, равен V 1 .

    Рисунок 2

    Приведем цилиндр в контакт с нагревателем (Рисунок 2) и предоставим газу возможность изотермически расширяться и совершать работу. Газ получает при этом от нагревателя некоторое количество теплоты Q 1 . Этот процесс графически изображается изотермой (кривая АВ ).

    Рисунок 3

    Когда объем газа становится равным некоторому значению V 1 ’< V 2 , дно цилиндра изолируют от нагревателя, после этого газ расширяется адиабатно до объема V 2 , соответствующего максимально возможному ходу поршня в цилиндре (адиабата ВС ). При этом газ охлаждается до температуры T 2 < T 1 .
    Теперь охлажденный газ можно изотермически сжимать при температуре Т2. Для этого его нужно привести в контакт с телом, имеющим ту же температуру Т 2 , т. е. с холодильником, и сжать газ внешней силой. Однако в этом процессе газ не вернется в первоначальное состояние - температура его будет все время ниже чем Т 1 .
    Поэтому изотермическое сжатие доводят до некоторого промежуточного объема V 2 ’>V 1 (изотермаCD ). При этом газ отдает холодильнику некоторое количество теплоты Q 2 , равное совершаемой над ним работе сжатия. После этого газ сжимается адиабатно до объема V 1 , при этом его температура повышается до Т 1 (адиабата DA ). Теперь газ вернулся в первоначальное состояние, при котором объем его равен V 1 , температура - T 1 , давление - p 1 ,и цикл можно повторить вновь.

    Итак, на участке ABC газ совершает работу (А > 0), а на участке CDA работа совершается над газом (А < 0). На участках ВС и AD работа совершается только за счет изменения внутренней энергии газа. Поскольку изменение внутренней энергии UBC = – UDA , то и работы при адиабатных процессах равны: АВС = –АDA. Следовательно, полная работа, совершаемая за цикл, определяется разностью работ, совершаемых при изотермических процессах (участки АВ иCD ). Численно эта работа равна площади фигуры, ограниченной кривой цикла ABCD .
    В полезную работу фактически преобразуется только часть количества теплоты QT, полученной от нагревателя, равная QT 1 – |QT 2 |. Итак, в цикле Карно полезная работа A = QT 1 – |QT 2 |.
    Максимальный коэффициент полезного действия идеального цикла, как показал С. Карно, может быть выражен через температуру нагревателя (Т 1) и холодильника (Т 2):

    В реальных двигателях не удается осуществить цикл, состоящий из идеальных изотермических и адиабатных процессов. Поэтому КПД цикла, осуществляемого в реальных двигателях, всегда меньше, чем КПД цикла Карно (при одних и тех же температурах нагревателей и холодильников):

    Из формулы видно, что КПД двигателей тем больше, чем выше температура нагревателя и чем ниже температура холодильника.

    Карно Никола Леонар Сади (1796-1832гг.) - талантливый французский инженер и физик, один из основателей термодинамики. В своем труде «Размышление о движущей силе огня и о машинах, способных развивать эту силу» (1824 г.) впервые показал, что тепловые двигатели могут совершать работу лишь в процессе перехода теплоты от горячего тела к холодному. Карно придумал идеальную тепловую машину, вычислил коэффициент полезного действия идеальной машины и доказал, что этот коэффициент является максимально возможным для любого реального теплового двигателя.
    Как вспомогательное средство для своих исследований Карно в 1824 году изобрёл (на бумаге) идеальную тепловую машину с идеальным газом в качестве рабочего тела. Важная роль двигателя Карно заключается не только в его возможном практическом применении, но и в том, что он позволяет объяснить принципы действия тепловых машин вообще; не менее важно и то, что Карно с помощью своего двигателя удалось внести существенный вклад в обоснование и осмысление второго начала термодинамики. Все процессы в машине Карно рассматриваются как равновесные (обратимые). Обратимый процесс – это такой процесс, который протекает настолько медленно, что его можно рассматривать как последовательный переход от одного равновесного состояния к другому и т. д., причём весь этот процесс можно провести в обратном направлении без изменения совершённой работы и переданного количества теплоты. (Заметим, что все реальные процессы необратимы) В машине осуществляется круговой процесс или цикл, при котором система после ряда преобразований возвращается в исходное состояние. Цикл Карно состоит из двух изотерм и двух адиабат. Кривые A - B и C - D - это изотермы, а B - C и D - A - адиабаты. Сначала газ расширяется изотермически при температуре T 1 . При этом он получает от нагревателя количество теплоты Q 1 . Затем он расширяется адиабатно и не обменивается теплотой с окружающими телами. Далее следует изотермическое сжатие газа при температуре Т 2 . Газ отдает в этом процессе холодильнику количество теплоты Q 2 . Наконец газ сжимается адиабатно и возвращается в начальное состояние. При изотермическом расширении газ совершает работу A" 1 >0, равную количеству теплоты Q 1 . При адиабатном расширении B - C положительная работа А" 3 равна уменьшению внутренней энергии при охлаждении газа от температуры Т 1 до температуры Т 2: A" 3 =-dU 1.2 =U(T 1)-U(Т 2). Изотермическое сжатие при температуре Т 2 требует совершения над газом работы А 2 . Газ совершает соответственно отрицательную работу А" 2 = -A 2 = Q 2 . Наконец, адиабатное сжатие требует совершения над газом работы А 4 = dU 2.1 . Работа самого газа А" 4 = -А 4 = -dU 2.1 = U(T 2)-U(Т 1). Поэтому суммарная работа газа при двух адиабатных процессах равна нулю. За цикл газ совершает работу А"=A" 1 +А" 2 =Q 1 +Q 2 =|Q 1 |-|Q 2 |. Эта работа численно равна площади фигуры, ограниченной кривой цикла Для вычисления коэффициента полезного действия нужно вычислить работы при изотермических процессах A - B и C - D. Расчеты приводят к следующему результату: (2) Коэффициент полезного действия тепловой машины Карно равен отношению разности абсолютных температур нагревателя и холодильника к абсолютной температуре нагревателя. Главное значение полученной Карно формулы (2) для КПД идеальной машины состоит в том, что она определяет максимально возможный КПД любой тепловой машины. Карно доказал следующую теорему: любая реальная тепловая машина, работающая с нагревателем температуры Т 1 и холодильником температуры Т 2 , не может иметь коэффициент полезного действия, превышающий КПД идеальной тепловой машины. КПД реальных тепловых машин Формула (2) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, КПД равно 1. В реальных тепловых двигателях процессы протекают настолько быстро, что уменьшение и увеличение внутренней энергии рабочего вещества при изменении его объема не успевает компенсироваться притоком энергии от нагревателя и отдачей энергии холодильнику. Поэтому изотермические про цессы не могут быть реализованы. То же относится и к строго адиабатным процессам, так как в природе нет идеальных теплоизоляторов. Осуществляемые в реальных тепловых двигателях циклы состоят из двух изохор и двух адиабат (в цикле Отто), из двух адиабат, изобары и изохоры (в цикле Дизеля), из двух адиабат и двух изобар (в газовой турбине) и др. При этом следует иметь в виду, что эти циклы могут также быть идеальными, как и цикл Карно. Но для этого необходимо, чтобы температуры нагревателя и холодильника были не постоянными, как в цикле Карно, а менялись бы точно так же, как меняется температура рабочего вещества в процессах изохорного нагрева и охлаждения. Другими словами, рабочее вещество должно контактироваться с бесконечно большим числом нагревателей и холодильников - только в этом случае на изохорах будет равновесная теплопередача. Разумеется, в циклах реальных тепловых двигателей процессы являются неравновесными, вследствие чего КПД реальных тепловых двигателей при одном и том же температурном интервале значительно меньше КПД цикла Карно. Вместе с тем выражение (2) играет огромную роль в термодинамике и является своеобразным «маяком», указывающим пути повышения КПД реальных тепловых двигателей.
    В цикле Отто сначала происходит всасывание в цилиндр рабочей смеси 1-2, затем адиабатное сжатие 2-3 и после ее изохорного сгорании 3-4, сопровождаемого возрастанием температуры и давления продуктов сгорания, происходит их адиабатное расширение 4-5, затем изохорное падение давления 5-2 и изобарное выталкивание поршнем отработанных газов 2-1. Поскольку на изохорах работа не совершается, а работа при всасывании рабочей смеси и выталкивании отработавших газов равна и противоположна по знаку, то полезная работа за один цикл равна разности работ на адиабатах расширения и сжатия и графически изображается площадью цикла.
    Сравнивая КПД реального теплового двигателя с КПД цикла Карно, нужно отметить, что в выражении (2) температура Т 2 в исключительных случаях может совпадать с температурой окружающей среды, которую мы принимаем за холодильник, в общем же случае она превышает температуру среды. Так, например, в двигателях внутреннего сгорания под Т 2 следует понимать температуру отработавших газов, а не температуру среды, в которую производится выхлоп.
    На рисунке изображен цикл четырехтактного двигателя внутреннего сгорания с изобарным сгоранием (цикл Дизеля). В отличие от предыдущего цикла на участке 1-2 всасывается. атмосферный воздух, который подвергается на участке 2-3 адиабатному сжатию до 3 10 6 -3 10 5 Па. Впрыскиваемое жидкое топливо воспламеняется в среде сильно сжатого, а значит, нагретого воздуха и изобарно сгорает 3-4, а затем происходит адиабатное расширение продуктов сгорании 4-5. Остальные процессы 5-2 и 2-1 протекают так же, как и в предыдущем цикле. Следует помнить, что в двигателях внутреннего сгорания циклы являются условно замкнутыми, так как перед каждым циклом цилиндр заполняется определенной массой рабочего вещества, которая по окончании цикла выбрасывается из цилиндра.
    Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится. Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: Т 1 = 800 К и T 2 = 300 К. При этих температурах максимальное значение коэффициента полезного действия равно: Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40%. Максимальный КПД - около 44% - имеют двигатели внутреннего сгорания. Коэффициент полезного действия любого теплового двигателя не может превышать максимально возможного значения где T 1 - абсолютная температура нагревателя, а Т 2 - абсолютная температура холодильника. Повышение КПД тепловых двигателей и приближение его к максимально возможному - важнейшая техническая задача.

    Неравенство Клаузиуса

    (1854): Количество теплоты, полученное системой при любом круговом процессе, делённое на абсолютную температуру, при которой оно было получено (приведённое количество теплоты), неположительно.

    Подведённое количество теплоты, квазистатически полученное системой, не зависит от пути перехода (определяется лишь начальным и конечным состояниями системы) - для квазистатических процессов неравенство Клаузиуса обращается в равенство .

    Энтропия, функция состояния S термодинамической системы, изменение которой dS для бесконечно малого обратимого изменения состояния системы равно отношению количества теплоты полученного системой в этом процессе (или отнятого от системы), к абсолютной температуре Т:

    Величина dS является полным дифференциалом, т.е. ее интегрирование по любому произвольно выбранному пути дает разность между значениями энтропии в начальном (А) и конечном (В) состояниях:

    Теплота не является функцией состояния, поэтому интеграл от δQ зависит от выбранного пути перехода между состояниями А и В. Энтропия измеряется в Дж/(моль·град).

    Понятие энтропии как функции состояния системы постулируется вторым началом термодинамики , которое выражает через энтропию различие между необратимыми и обратимыми процессами . Для первых dS>δQ/T для вторых dS=δQ/T.

    Энтропия как функция внутренней энергии U системы, объема V и числа молей n i i -го компонента представляет собой характеристическую функцию (см. Термодинамические потенциалы ). Это является следствием первого и второго начал термодинамики и записывается уравнением:

    где р - давление , μ i - химический потенциал i -го компонента. Производные энтропии по естественным переменным U, V и n i равны:

    Простые формулы связывают энтропию с теплоемкостями при постоянном давлении С р и постоянном объеме C v :

    С помощью энтропии формулируются условия достижения термодинамического равновесия системы при постоянстве ее внутренней энергии, объема и числа молей i -го компонента (изолированная система) и условие устойчивости такого равновесия:

    Это означает, что энтропия изолированной системы достигает максимума в состоянии термодинамического равновесия. Самопроизвольные процессы в системе могут протекать только в направлении возрастания энтропии .

    Энтропия относится к группе термодинамических функций, называемых функциями Массье-Планка. Другие функции, принадлежащие к этой группе - функция Массье Ф 1 = S - (1/T)U и фцнкция Планка Ф 2 = S - (1/T)U - (p/T)V , могут быть получены в результате применения к энтропии преобразования Лежандра.

    Согласно третьему началу термодинамики (см. Тепловая теорема ), изменение энтропии в обратимой химической реакции между веществами в конденсированном состоянии стремится к нулю при T →0:

    Постулат Планка (альтернативная формулировка тепловой теоремы) устанавливает, что энтропия любого химического соединения в конденсированном состоянии при абсолютном нуле температуры является условно нулевой и может быть принята за начало отсчета при определении абсолютного значения энтропии вещества при любой температуре. Уравнения (1) и (2) определяют энтропию с точностью до постоянного слагаемого.

    В химической термодинамике широко используют следующие понятия: стандартная энтропия S 0 , т.е. энтропия при давлении р =1,01·10 5 Па (1 атм); стандартная энтропия химической реакции т.е. разница стандартных энтропий продуктов и реагентов; парциальная молярная энтропия компонента многокомпонентной системы .

    Для расчета химических равновесий применяют формулу:

    где К - константа равновесия , и - соответственно стандартные энергия Гиббса , энтальпия и энтропия реакции; R -газовая постоянная.

    Определение понятия энтропия для неравновесной системы опирается на представление о локальном термодинамическом равновесии. Локальное равновесие подразумевает выполнение уравнения (3) для малых объемов неравновесной в целом системы (см. Термодинамика необратимых процессов ). При необратимых процессах в системе может осуществляться производство (возникновение) энтропии . Полный дифференциал энтропии определяется в этом случае неравенством Карно-Клаузиуса:

    где dS i > 0 - дифференциал энтропии , не связанный с потоком тепла а обусловленный производством энтропии за счет необратимых процессов в системе (диффузии . теплопроводности , химических реакций и т.п.). Локальное производство энтропии (t - время) представляется в виде суммы произведений обобщенных термодинамических сил X i на обобщенные термодинамические потоки J i :

    Производство энтропии за счет, например, диффузии компонента i обусловлено силой и потоком вещества J ; производство энтропии за счет химической реакции - силой Х=А/Т , где А -химическое сродство, и потоком J , равным скорости реакции. В статистической термодинамике энтропия изолирированной системы определяется соотношением: где k - постоянная Больцмана . - термодинамический вес состояния, равный числу возможных квантовых состояний системы с заданными значениями энергии, объема, числа частиц. Равновесное состояние системы отвечает равенству заселенностей единичных (невырожденных) квантовых состояний. Возрастание энтропии при необратимых процессах связано с установлением более вероятного распределения заданной энергии системы по отдельным подсистемам. Обобщенное статистическое определение энтропии , относящееся и к неизолированным системам, связывает энтропию с вероятностями различных микросостояний следующим образом:

    где w i - вероятность i -го состояния.

    Абсолютную энтропию химического соединения определяют экспериментально, главным образом калориметрическим методом, исходя из соотношения:

    Использование второго начала позволяет определять энтропию химических реакций по экспериментальным данным (метод электродвижущих сил, метод давления пара и др.). Возможен расчет энтропии химических соединений методами статистической термодинамики, исходя из молекулярных постоянных, молекулярной массы, геометрии молекулы, частоты нормальных колебаний. Такой подход успешно осуществляется для идеальных газов. Для конденсированных фаз статистический расчет дает значительно меньшую точность и проводится в ограниченном числе случаев; в последние годы в этой области достигнуты значительные успехи.


    Похожая информация.


    Коэффициент полезного действия (КПД) - это характеристика результативности системы в отношении преобразования или передачи энергии, который определяется отношением полезно использованной энергии к суммарной энергии, полученной системой.

    КПД - величина безразмерная, обычно ее выражают в процентах:

    Коэффициент полезного действия (КПД) теплового двигателя определяется по формуле: , где A = Q1Q2. КПД теплового двигателя всегда меньше 1.

    Цикл Карно - это обратимый круговой газовый процесс, который состоит из последовательно стоящих двух изотермических и двух адиабатных процессов, выполняемых с рабочим телом.

    Круговой цикл, включающий в себя две изотермы и две адиабаты, соответствует максимальному КПД.

    Французский инженер Сади Карно в 1824 г. вывел формулу максимального КПД идеального теплового двигателя, где рабочее тело - это идеальный газ, цикл которого состоял из двух изотерм и двух адиабат, т. е. цикл Карно. Цикл Карно - реальный рабочий цикл теплового двигателя, свершающего работу за счет теплоты, подводимой рабочему телу в изотермическом процессе.

    Формула КПД цикла Карно, т. е. максимального КПД теплового двигателя имеет вид: , где T1 - абсолютная температура нагревателя, Т2 - абсолютная температура холодильника.

    Тепловые двигатели - это конструкции, в которых тепловая энергия превращается в механическую.

    Тепловые двигатели многообразны как по конструкции, так и по назначению. К ним относятся паровые машины, паровые турбины, двигатели внутреннего сгорания, реактивные двигатели.

    Однако, несмотря на многообразие, в принципе действия различных тепловых двигателей есть общие черты. Основные компоненты каждого теплового двигателя:

    • нагреватель;
    • рабочее тело;
    • холодильник.

    Нагреватель выделяет тепловую энергию, при этом нагревает рабочее тело, которое находится в рабочей камере двигателя. Рабочим телом может быть пар или газ.

    Приняв количество теплоты, газ расширяется, т.к. его давление больше внешнего давления, и двигает поршень, производя положительную работу. При этом его давление падает, а объем увеличивается.

    Если сжимать газ, проходя те же состояния, но в обратном направлении, то совершим ту же по абсолютному значению, но отрицательную работу. В итоге вся работа за цикл будет равна нулю.

    Для того чтобы работа теплового двигателя была отлична от нуля, работа сжатия газа должна быть меньше работы расширения.

    Чтобы работа сжатия стала меньше работы расширения, необходимо, чтобы процесс сжатия проходил при меньшей температуре, для этого рабочее тело нужно охладить, поэтому в конструкцию теплового двигателя входит холодильник. Холодильнику рабочее тело отдает при соприкосновении с ним количество теплоты.

    Работа, совершаемая двигателем, равна:

    Впервые этот процесс был рассмотрен французским инженером и ученым Н. Л. С. Карно в 1824 г. в книге «Размышления о движущей силе огня и о машинах, способных развивать эту силу».

    Целью исследований Карно было выяснение причин несовершенства тепловых машин того времени (они имели КПД ≤ 5 %) и поиски путей их усовершенствования.

    Цикл Карно — самый эффективный из всех возможных. Его КПД максимален.

    На рисунке изображены термодинамические процес-сы цикла. В процессе изотермического расширения (1-2) при температуре T 1 , работа совершается за счет измене-ния внутренней энергии нагревателя, т. е. за счет подве-дения к газу количества теплоты Q :

    A 12 = Q 1 ,

    Охлаждение газа перед сжатием (3-4) происходит при адиабатном расширении (2-3). Изменение внутренней энергии ΔU 23 при адиабатном процессе (Q = 0 ) полностью преобразуется в механическую работу:

    A 23 = -ΔU 23 ,

    Температура газа в результате адиабатического рас-ширения (2-3) понижается до температуры холодильни-ка T 2 < T 1 . В процессе (3-4) газ изотермически сжимает-ся, передавая холодильнику количество теплоты Q 2 :

    A 34 = Q 2 ,

    Цикл завершается процессом адиабатического сжатия (4-1), при котором газ нагревается до температуры Т 1 .

    Максимальное значение КПД тепловых двигателей, работающих на идеальном газе, по циклу Карно:

    .

    Суть формулы выражена в доказанной С . Карно теореме о том, что КПД любого теплового двигателя не может превышать КПД цикла Карно, осуществляемого при той же температуре нагревателя и холодильника.

    Рабочее тело, получая некоторое количество теплоты Q1от нагревателя, часть этого количества теплоты, по модулю равную |Q2|,отдает холодильнику. Поэтому совершаемая работа не может быть больше A = Q1 - |Q2|. Отношение этой работы к количеству теплоты, полученному расширяющимся газом от нагревателя, называется коэффициентом полезного действия тепловой машины:

    Коэффициент полезного действия тепловой машины, работающей по замкнутому циклу, всегда меньше единицы. Задача теплоэнергетики состоит в том, чтобы сделать КПД как можно более высоким, т. е. использовать для получения работы как можно большую часть теплоты, полученной от нагревателя. Впервые наиболее совершенный циклический процесс, состоящий из изотерм и адиабат, был предложен французским физиком и инженером С. Карно в 1824 г.

    3) Под идеальной понимается тепловая машина, имеющая максимальный к.п.д. при заданных значениях нагревателя T 1 и холодильника T 2 .
    Из второго начала термодинамики следует, что даже у идеального теплового двигателя, работающего без потерь, к.п.д. принципиально ниже 100 % и вычисляется по формуле:

    Рабочим телом в идеальной тепловой машине является идеальный газ, а работает она по циклу Карно:

    4) Понятие энтропии впервые было введено Клаузиусом в термодинамике для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального . Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при замкнутых обратимых процессах, тогда как в необратимых - её изменение всегда положительно.

    Математически энтропия определяется как функция состояния системы, равная в равновесном процессе количеству теплоты, сообщённой системе или отведённой от системы, отнесённому к термодинамической температуре системы:

    где - приращение энтропии; - минимальная теплота, подведённая к системе; - абсолютная температура процесса.

    Энтропия устанавливает связь между макро- и микро- состояниями. Особенность данной характеристики заключается в том, что это единственная функция в физике, которая показывает направленность процессов. Поскольку энтропия является функцией состояния, то она не зависит от того, как осуществлён переход из одного состояния системы в другое, а определяется только начальным и конечным состояниями системы.



    Например, при температуре 0 °C, вода может находиться в жидком состоянии и при незначительном внешнем воздействии начинает быстро превращаться в лед, выделяя при этом некоторое количество теплоты. При этом температура вещества так и остается 0 °C. Изменяется состояние вещества, сопровождающееся выделением тепла, вследствие изменения структуры.

    Рудольф Клаузиус дал величине имя «энтропия», происходящее от греческого слова τρoπή, «изменение» (изменение, превращение, преобразование). Данное равенство относится к изменению энтропии, не определяя полностью саму энтропию.

    Пример. Средняя сила тяги двигателя составляет 882 Н. На 100 км пути он потребляет 7 кг бензина. Определите КПД его двигателя. Сначала найдите полезную работу. Она равна произведению силы F на расстояние S, преодолеваемое телом под ее воздействием Ап=F∙S. Определите количество теплоты, которое выделится при сжигании 7 кг бензина, это и будет затраченная работа Аз=Q=q∙m, где q – удельная теплота сгорания топлива, для бензина она равна 42∙10^6 Дж/кг, а m – масса этого топлива. КПД двигателя будет равен КПД=(F∙S)/(q∙m)∙100%= (882∙100000)/(42∙10^6∙7)∙100%=30%.

    В общем случае чтобы найти КПД, любой тепловой машины (двигателя внутреннего сгорания, парового двигателя, турбины и т.д.), где работа выполняется газом, имеет коэффициент полезного действия равный разности теплоты отданной нагревателем Q1 и полученной холодильником Q2, найдите разность теплоты нагревателя и холодильника, и поделите на теплоту нагревателя КПД= (Q1-Q2)/Q1. Здесь КПД измеряется в дольных единицах от 0 до 1, чтобы перевести результат в проценты, умножьте его на 100.

    Чтобы получить КПД идеальной тепловой машины (машины Карно), найдите отношение разности температур нагревателя Т1 и холодильника Т2 к температуре нагревателя КПД=(Т1-Т2)/Т1. Это предельно возможный КПД для конкретного типа тепловой машины с заданными температурами нагревателя и холодильника.

    Для электродвигателя найдите затраченную работу как произведение мощности на время ее выполнения. Например, если электродвигатель крана мощностью 3,2 кВт поднимает груз массой 800 кг на высоту 3,6 м за 10 с, то его КПД равен отношению полезной работы Ап=m∙g∙h, где m – масса груза, g≈10 м/с² ускорение свободного падения, h – высота на которую подняли груз, и затраченной работы Аз=Р∙t, где Р – мощность двигателя, t – время его работы. Получите формулу для определения КПД=Ап/Аз∙100%=(m∙g∙h)/(Р∙t) ∙100%=%=(800∙10∙3,6)/(3200∙10) ∙100%=90%.

    Видео по теме

    Источники:

    • как определить кпд

    КПД (коэффициент полезного действия) – безразмерная величина, характеризующая эффективность работы. Работа есть сила, влияющая на процесс в течение некоторого времени. На действие силы затрачивается энергия. Энергия вкладывается в силу, сила вкладывается в работу, работа характеризуется результативностью.

    Инструкция

    Расчет КПД с определения энергии, потраченной непосредственно для достижения результата. Она может быть выражена в единицах, необходимых для достижения результата энергии, силы, мощности.
    Чтобы не ошибиться, полезно держать в уме следующую схему. Простейшая включает в себя элемента: «рабочий », источник энергии, органы управления, пути и элементы проведения и преобразования энергии. Энергия, потраченная на достижение результата – это энергия, затраченная только «рабочим инструментом».

    Далее вы определяете энергию, реально потраченную всей системой в процессе достижения результата. То есть не только «рабочим инструментом», но и органами управления, преобразователями энергии, а также к затратам следует отнести энергию, рассеянную в путях проведения энергии.

    И далее вы подсчитываете коэффициент полезного действия по формуле:
    К.П.Д. = (А / В)*100%, где
    А – энергия, необходимая на достижение результата
    В – энергия, реально затраченная системой на достижение результатов.Например: на проведение электроинструментальных работ было потрачено 100 кВт, при этом вся энергосистема цеха за это время потребила 120 кВт. КПД системы (энергосистемы цеха) в этом случае будет равен 100 кВт / 120 кВт = 0.83*100% = 83%.

    Видео по теме

    Обратите внимание

    Часто понятие КПД применяют, оценивая отношение запланированных расходов энергии и реально потраченных. Например, соотношение запланированных объемов работ (или времени, необходимого для выполнения работы) к реально произведенным работам и потраченному времени. Здесь следует быть предельно внимательным. Например, запланировали затратить на работы 200 кВт, а затратили 100 кВт. Или запланировали произвести работы за 1 час, а затратили 0.5 часа; в обоих случаях КПД получается 200%, что невозможно. На самом деле в таких случаях имеет место, как говорят экономисты, «стахановский синдром», то есть сознательное занижение плана по отношению к реально необходимым затратам.

    Полезный совет

    1. Затраты энергии вы должны оценивать в одних и тех же единицах.

    2. Затраченная всей системой энергия не может быть меньше потраченной непосредственно на достижение результата, то есть КПД не может быть больше 100%.

    Источники:

    • как посчитать энергии

    Совет 3: Как рассчитать эффективность танка в игре World of Tanks

    Рейтинг эффективности танка или его КПД – один из комплексных показателей игрового мастерства. Его учитывают при приеме в топовые кланы, в киберспортивные команды, в роты. Формула расчета довольно сложна, поэтому игроки пользуются различными онлайн-калькуляторами.

    Формула расчета

    Одна из первых формул расчета выглядела так:
    R=K x (350 – 20 x L) + Ddmg x (0,2 + 1,5 / L) + S x 200 + Ddef x 150 + C x 150

    Сама формула приведена на картинке. В этой формуле имеются следующие переменные:
    - R – боевая эффективность игрока;
    - К – среднее количество уничтоженных танков (общее количество фрагов, деленное на общее количество боев):
    - L – средний уровень танка;
    - S – среднее количество обнаруженных танков;
    - Ddmg – среднее количество нанесенного урона за бой;
    - Ddef – среднее количество очков защиты базы;
    - С – среднее количество очков захвата базы.

    Значение полученных цифр:
    - менее 600 – плохой игрок; такой КПД имеют около 6% всех игроков;
    - от 600 до 900 – игрок ниже среднего; такой КПД имеют 25% всех игроков;
    - от 900 до 1200 – средний игрок; такую эффективность имеют 43% игроков;
    - от 1200 и выше – сильный игрок; таких игроков около 25%;
    - свыше 1800 – уникальный игрок; таких не более 1%.

    Американские игроки используют свою формулу WN6, выглядящую так:
    wn6=(1240 – 1040 / (MIN (TIER,6)) ^ 0.164) x FRAGS + DAMAGE x 530 / (184 x e ^ (0.24 x TIER) + 130) + SPOT x 125 + MIN(DEF,2.2) x 100 + ((185 / (0.17+ e ^ ((WINRATE - 35) x 0.134))) - 500) x 0.45 + (6-MIN(TIER,6)) x 60

    В этой формуле:
    MIN (TIER,6) – средний уровень танка игрока, если он больше 6, используется значение 6
    FRAGS – среднее количество уничтоженных танков
    TIER – средний уровень танков игрока
    DAMAGE – средний урон в бою
    MIN (DEF,2,2) – среднее количество сбитых очков захвата базы, если значение больше 2,2 используется 2,2
    WINRATE – общий процент побед

    Как видно, в этой формуле не учитываются очки захвата базы, количество фрагов на низкоуровневой технике, процент побед и влияние начального засвета на рейтинге сказываются не очень сильно.

    Компания Wargeiming ввела в обновлении показатель личного рейтинга эффективности игрока, который рассчитывается по более сложной формуле, учитывающей все возможные статистические показатели.

    Как повысить эффективность

    Из формулы Кх(350-20хL) видно, что чем выше уровень танка, тем меньшее количество очков эффективности получается за уничтожение танков, зато большее за нанесение урона. Поэтому, играя на низкоуровневой технике, старайтесь брать больше фрагов. На высокоуровневой – наносить больше урона (дамага). Количество очков полученных или сбитых очков захвата базы на рейтинг влияют несильно, причем за сбитые очки захвата очков КПД начисляется больше, чем за полученные очки захвата базы.

    Поэтому большинство игроков улучшают свою статистику, играя на низших уровней, в так называемой песочнице. Во-первых, большинство игроков на низших уровнях – новички, не имеющие навыков, не использующие прокачанный экипаж с умениями и навыками, не использующие дополнительное оборудование, не знающие преимуществ и недостатков того или иного танка.

    Независимо от того, на какой технике играете, старайтесь сбивать как можно большее количество очков захвата базы. Взводные бои сильно повышают рейтинг эффективности, так как игроки во взводе действуют скоординировано и чаще добиваются победы.

    Термин «КПД» - это аббревиатура, образованная от словосочетания «коэффициент полезного действия». В самом общем виде он представляет собой соотношение затраченных ресурсов и результата выполненной с их использованием работы.

    КПД

    Понятие коэффициента полезного действия (КПД) может быть применено к самым различным типам устройств и механизмов, работа которых основана на использовании каких-либо ресурсов. Так, если в качестве такого ресурса рассматривать энергию, используемую для работы системы, то результатом этого следует считать объем полезной работы, выполненной на этой энергии.

    В общем виде формулу КПД можно записать следующим образом: n = A*100%/Q. В данной формуле символ n применяется в качестве обозначения КПД, символ A представляет собой объем выполненной работы, а Q - объем затраченной энергии. При этом стоит подчеркнуть, что единицей измерения КПД являются проценты. Теоретически максимальная величина этого коэффициента составляет 100%, однако на практике достигнуть такого показателя практически невозможно, так как в работе каждого механизма присутствуют те или иные потери энергии.

    КПД двигателя

    Двигатель внутреннего сгорания (ДВС), представляющий собой один из ключевых компонентов механизма современного автомобиля, также представляет собой вариант системы, основанной на использовании ресурса - бензина или дизельного топлива. Поэтому для нее можно рассчитать величину КПД.

    Несмотря на все технические достижения автомобильной промышленности, стандартный КПД ДВС остается достаточно низким: в зависимости от использованных при конструировании двигателя технологий он может составлять от 25% до 60%. Это связано с тем, что работа такого двигателя сопряжена со значительными потерями энергии.

    Так, наибольшие потери эффективности работы ДВС приходятся на работу системы охлаждения, которая забирает до 40% энергии, выработанной двигателем. Значительная часть энергии - до 25% - теряется в процессе отведения отработанных газов, то есть попросту уносится в атмосферу. Наконец, примерно 10% энергии, вырабатываемой двигателем, уходит на преодоление трения между различными деталями ДВС.

    Поэтому технологи и инженеры, занятые в автомобильной промышленности, прилагают значительные усилия для повышения КПД двигателей путем сокращения потерь по всем перечисленным статьям. Так, основное направление конструкторских разработок, направленное на уменьшение потерь, касающихся работы системы охлаждения, связано с попытками уменьшить размер поверхностей, через которые происходит теплоотдача. Уменьшение потерь в процессе газообмена производится преимущественно с использованием системы турбонаддува, а снижение потерь, связанных с трением, - посредством применения более технологичных и современных материалов при конструировании двигателя. Как утверждают специалисты, применение этих и других технологий способно поднять КПД ДВС до уровня 80% и выше.

    Видео по теме

    Источники:

    • О ДВС, его резервах и перспективах развития глазами специалиста


    Похожие статьи