• Какой метод используют в цитологии. Цитология – наука о клетке Современные методы исследования. Клеточный уровень организации жизни

    02.08.2020

    Основы цитологии

    Клетка. Клеточная теория.

    Клетка - мельчайшая структура, способная к самовоспроизведению. Термин «клетка» был введен Р. Гуком в 1665 г. (он изучал с помощью микроскопа срез стебля бузины - сердцевину и пробку; хотя сам Гук видел не клетки, а их оболочки). Совершенствова­ние микроскопической техники позволило выявить разнообразие форм клеток, сложность строения ядра, процесс деления клеток и др. Микроскоп был усовершенствован Антони ван Левенгуком (его микроскопы давали увеличение в 270-300 раз).

    Другие ме­тоды исследования клетки:

    1. дифференцированное центрифугирование - основано на том, что различные клеточные структуры имеют разную плотность. При очень быстром вращении в приборе (ультрацентрифуге) органеллы тонко измельченных клеток выпадают в осадок из раствора, располагаясь слоями в соответствии со своей плотностью. Эти слои разделяют и изучают.
    2. электронная микроскопия - используется с 30-х годов 20-го века (когда был изобретен электронный микроскоп - он дает увеличение до 10 6 раз); с помощью этого метода изучают строение мельчайших структур клетки, в т.ч. отдельных органелл и мембран.
    3. авторадиография - метод, позволяющий анализировать локализацию в клетках веществ, меченных радиоактивными изотопами. Так выявляют места синтеза веществ, состав белков, пути внутриклеточного транспорта.
    4. фазово-контрастная микроскопия - используется для исследования прозрачных бесцветных объектов (живых клеток). При прохождении через такую среду световые волны смещаются на величину, определяемую толщиной материала и скоростью проходящего через него света. Фазово-контрастный микроско­п преобразует эти сдвиги в черно-белое изображение.
    5. рентгеноструктурный анализ - изучение клетки с помощью рентгеновских лучей.

    В 1838-1839 гг. ботаником Матиасом Шлейденом и физиологом Теодором Шванном была создана клеточная теория . Ее суть заключалась в том, что основным структурным элементом всех живых организмов (растений и животных) является клетка.

    Основные положения клеточной теории :
    1. клетка - элементарная живая система; основа строения, жизнедеятельности, размножения и индивидуального развития организмов.
    2. клетки различных тканей организма и клетки всех организмов сходны по строению и химическому составу.
    3. новые клетки возникают только путем деления ранее существовавших клеток.
    4. рост и развитие любого многоклеточного организма есть следствие роста и размножения одной или нескольких исходных клеток.

    Молекулярный состав клетки.

    Химические элементы, входящие в состав клеток и выполняющие какие-либо функции, называются биогенными . По содержанию элементы, входящие в состав клетки, делятся на три группы:

    1. макроэлементы - составляют основную массу клетки - 99%. Из них 98% приходится на 4 элемента: С, О, Н и N. Также к этой группе относятся К, Мg, Са, Р, С1, S, Na, Fe.
    2. микроэлементы - к ним относятся в основном ионы, входящие в состав ферментов, гормонов и др. веществ. Их концентрация от 0,001 до 0,000001 % (В, Си, Zn. Br, I, Mo и т.д.).
    3. ультрамикроэлементы - их концентрация не превышает 10 -6 %, а физиологическая роль не выявлена (Аи, Аg, U, Ra).

    Химические компоненты живого делятся на неорганические (вода, минеральные соли) и органические (белки, углеводы, липиды, нуклеиновые кислоты, витамины).


    Вода. За небольшим исключением (кость и эмаль зубов), вода является преобладающим компонентом клеток - в среднем 75-85%. В клетке вода находится в свободном и связанном состоянии. Молекула воды представляет собой диполь - на одном конце отрицательный заряд, на другом - положительный, но в целом молекула электронейтральна. Вода имеет высокую теплоемкость и относительно высокую для жидкостей теплопроводность.

    Биологическое значение воды: универсальный растворитель (для полярных веществ, неполярные вещества в воде не растворяются); среда для реакций, участник реакций (расщепление белков), участвует в поддержании теплового равновесия клетки; источник кислорода и водорода при фотосинтезе; основное средство передвижения веществ в организме.


    Ионы и соли. Соли входят в состав костей, панцирей, раковин и т.п., т.е. выполняют опорную и защитную функции, а также участвуют в минеральном обмене. Ионы входят в состав различных веществ (железо - гемоглобин, хлор - соляная кислота в желудке, магний - хлорофилл) и участвуют в регуляторных и иных процессах, а также в поддержании гомеостаза.


    Белки. По содержанию в клетке занимают первое место из органических веществ. Белки - это нерегулярные полимеры, состоящие из аминокислот. В состав белков входят 20 разных аминокислот. Аминокислота:

    NH 2 -CH-COOH | R

    Соединение аминокислот происходит следующим образом: аминогруппа одной кислоты соединяется с карбоксильной группой другой, при этом выделяется молекула воды. Образовавшаяся связь называется пептидной (разновидность ковалентной), а само соединение - пептидом . Соединение из большого числа аминокислот называется полипептидом . Если белок состоит только из аминокислот, то его называют простым (протеином ), если в него входят другие вещества, то сложным (протеидом ).

    Пространственная организация белков включает 4 структуры:

    1. Первичная (линейная) - полипептидная цепь, т.е. нить аминокислот, соединенных ковалентными связями.
    2. Вторичная - белковая нить закручивается в спираль. В ней возникают водородные связи.
    3. Третичная - спираль далее свертывается, образуя глобулу (клубок) или фибриллу (вытянутая структура). В ней возникают гидрофобные и электростатические взаимодействия, а также ковалентные дисульфидные -S-S- связи.
    4. Четвертичная - соединение нескольких макромолекул белка вместе.

    Разрушение структуры белка называется денатурацией . Она бывает необратимой (если повреждается первичная структура) или обратимой (если повреждаются другие структуры).

    Функции белков:

    1. ферменты - это биологически активные вещества, они катализируют химические реакции. Известно более 2000 ферментов. Свойства ферментов: специфичность действия (каждый действуют только на определенное вещество - субстрат), активность только в определенной среде (каждый фермент имеет свой оптимальный диапазон рН) и при определенной температуре (при повышении температуры увеличивается вероятность денатурации, поэтому активность фермента снижается), большая эффективность действия при малом их содержании. Любой фермент имеет активный центр - это особый участок в структуре фермента, к которому присоединяется молекула субстрата. В настоящее время на основании строения ферменты делят на две основные группы: полностью белковые ферменты и ферменты, состоящие из двух частей: апофермента (белковая часть) и кофермента (небелковая часть; это ион или молекула, связывающаяся с белковой частью, образуя при этом каталитически активный комплекс). Коферментами являются ионы металлов, витамины. Без кофермента апофермент не функционирует.
    2. регуляторные - гормоны.
    3. транспортные - гемоглобин.
    4. защитные - иммуноглобулины (антитела).
    5. движение - актин, миозин.
    6. строительная (структурная).
    7. энергетическая - крайне редко, только после того, когда закончились углеводы и липиды.

    Углеводы - органические вещества, в состав которых входит С, О и Н.Общая формула: С n (Н 2 О) n , где n не менее 3-х. Они делятся на 3 класса: моносахариды, дисахариды (олигосахариды) и полисахариды.

    Моносахариды (простые углеводы) - состоят из одной молекулы, это твердые кристаллические вещества, хорошо растворимые в воде, имеющие сладкий вкус. Рибоза и дезоксирибоза (С 5) - входят в состав ДНК и РНК. Глюкоза (С 6 Н 12 О 6) - входит в состав полисахаридов; основной первичный источник энергии в клетке. Фруктоза и галактоза - изомеры глюкозы.

    Олигосахариды - состоят из 2, 3 или 4-х остатков моносахаридов. Наиболее важны дисахариды - они состоят из 2 остатков; хорошо растворимы в воде, сладкие на вкус. Сахароза (С 12 Н 22 О 11) - состоит из остатков глюкозы и фруктозы; широко распространена в растениях. Лактоза (молочный сахар) - состоит из глюкозы и галактозы. Важнейший источник энергии для детенышей млекопитающих. Мальтоза - состоит из 2-х молекул глюкозы. Это основной структурный элемент крахмала и гликогена.

    Полисахариды - высокомолекулярные вещества, состоящие из большого числа остатков моносахаридов. Плохо растворимы в воде, не имеют сладкого вкуса. Крахмал - представлен двумя формами: амилоза (состоит из остатков глюкозы, соединенных в неразветвленную цепь) и амилопектин (состоит из остатков глюкозы, линейные и разветвленные цепи). Гликоген - полисахарид животных и грибов. По структуре напоминает крахмал, но сильнее разветвлен. Клетчатка (целлюлоза) ­ - главный структурный полисахарид растений, входит в состав клеточных стенок. Это линейный полимер.

    Функции углеводов:

    1. энергетическая - 1 г при полном распаде дает 17,6 кДж.
    2. Структурная.
    3. Опорная (у растений).
    4. Запас питательных веществ (крахмал и гликоген).
    5. Защитная - вязкие секреты (слизи) богаты углеводами и предохраняют стенки полых органов.

    Липиды - объединяют жиры и жироподобные вещества - липоиды . Жиры - это сложные эфиры жирных кислот и глицерина. Жирные кислоты: пальмитиновая, стеариновая (насыщенные), олеиновая (ненасыщенная). Растительные жиры богаты ненасыщенными кислотами, поэтому они легкоплавкие, при комнатной температуре - жидкие. Животные жиры содержат в основном насыщенные кислоты, поэтому они более тугоплавкие, при комнатной температуре - твердые. Все жиры нерастворимы в воде, но хорошо растворяются в неполярных растворителях; плохо проводят тепло. К жирам относятся фосфолипиды (это основной компонент мембран клеток) - в их состав входит остаток фосфорной кислоты. К липоидам относятся стероиды, воска и др.

    Функции липидов:

    1. структурная
    2. энергетическая - 1 г при полном распаде дает 38,9 кДж.
    3. Запас питательных веществ (жировая ткань)
    4. Терморегуляция (подкожный жир)
    5. Поставщики эндогенной воды - при окислении 100 г жира выделяется 107 мл воды (принцип верблюда)
    6. Защита внутренних органов от повреждения
    7. Гормоны (эстрогены, андрогены, стероидные гормоны)
    8. Простагландины - регуляторные вещества, поддерживают тонус сосудов и гладких мышц, участвуют в иммунных реакциях.

    АТФ (аденозинтрифосфорная кислота). Энергия, освобождающаяся при распаде органических веществ, используется для работы в клетках не сразу, а сначала запасается в форме высокоэнергетического соединения - АТФ. АТФ состоит из трех остатков фосфорной кислоты, рибозы (моносахарид) и аденина (остаток азотистого основания). При отщеплении одного остатка фосфорной кислоты образуется АДФ, а если отщепляется два остатка - то АМФ. Реакция отщепления каждого остатка сопровождается освобождением 419 кДж/моль. Такая фосфорно-кислородная связь в АТФ называется макроэргической . АТФ имеет две макроэргические связи. АТФ образуется в митохондриях из АМФ, которая присоединяет сначала один, затем второй остаток фосфорной кислоты с поглощением 419 кДж/моль энергии (или из АДФ с присоединением одного остатка фосфорной кислоты).

    Примеры процессов, требующих больших затрат энергии: биосинтез белка.


    Нуклеиновые кислоты - это высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной информации. Впервые описаны в 19-ом веке (1869 г.) швейцарцем Фридрихом Мишером. Существует две разновидности нуклеиновых кислот.

    ДНК (дезоксирибонуклеиновая кислота)

    Содержание в клетке строго постоянно. В основном находится в ядре (где образует хромосомы, состоящие из ДНК и двух видов белков). ДНК - это нерегулярный биополимер, мономером которого является нуклеотид, состоящий из азотистого основания, остатка фосфорной кислоты и моносахарида дезоксирибозы. В ДНК существует 4 разновидности нуклеотидов: А (аденин), Т (тимин), Г (гуанин) и Ц (цитозин). А и Г относятся к пуриновым основаниям, Ц и Т - к пиримидиновым. При этом в ДНК число пуриновых оснований равно числу пиримидиновых, а также А=Т и Ц=Г (правило Чаргаффа).

    В 1953 г. Дж. Уотсон и Ф. Крик открыли, что молекула ДНК представляет собой двойную спираль. Каждая спираль состоит из полинуклеотидной цепи; цепи закручены одна вокруг другой и вместе вокруг общей оси, каждый виток спирали содержит 10 пара нуклеотидов. Цепи удерживаются вместе водородными связями, возникающими между основаниями (между А и Т - две, между Ц и Г - три связи). Полинуклеотидные цепи комплементарны друг другу: напротив аденина в одной цепи всегда находится тимин другой и наоборот (А-Т и Т-А); напротив цитозина - гуанин (Ц-Г и Г-Ц). Этот принцип строения ДНК называется принципом дополнения или комплементарности.

    Каждая цепь ДНК имеет определенную ориентацию. Две цепи в молекуле ДНК расположены в противоположном направлении, т.е. антипараллельно.

    Основная функция ДНК - хранение и передача наследственной информации.

    РНК (рибонуклеиновая кислота)

    1. и-РНК (информационная РНК) - содержится в ядре и цитоплазме. Ее функция - перенос информации о структуре белка от ДНК к месту синтеза белка.
    2. т-РНК (транспортная РНК) - в основном в цитоплазме клетки. Функция: перенос молекул аминокислот к месту синтеза белка. Это самая маленькая РНК.
    3. р-РНК (рибосомная РНК) - участвует в образовании рибосом. Это самая крупная РНК.

    Строение клетки.

    Основными компонентами клетки являются: наружная клеточная мембрана, цитоплазма и ядро.

    Мембрана. В состав биологической мембраны (плазмалеммы ) входят липиды, составляющие основу мембраны и высокомолекулярные белки. Молекулы липидов полярные и состоят из несущих заряд полярных гидрофильных головок и неполярных гидрофобных хвостов (жирные кислоты). В основном в мембране содержатся фосфолипиды (они имеют в своем составе остаток фосфорной кислоты). Белки мембраны могут быть поверхностными , интегральными (пронизывают мембрану насквозь) и полуинтегральными (погружены в мембрану).

    Совре­менная модель биологической мембраны получила название «универсальная жидкостно-мозаичная модель» , согласно которой глобулярные белки погружены в двойной липидный слой, при этом одни белки пронизывают его насквозь, другие - частично. Считается, что интегральные белки амфифильны, их неполярные участки погружены в двойной липидный слой, а полярные выступают наружу, образуя гидрофильную поверхность.

    Субмембранная система клетки (подмембранный комплекс). Представляет собой специализированную периферическую часть цитоплазмы и занимает пограничное положение между рабочим метаболическим аппаратом клетки и плазматической мембраной. В субмембранной системе поверхностного аппарата можно выделить две части: периферическую гиалоплазму , где сосредоточены ферментативные системы, связанные с процессами трансмембранного транспорта и рецепции, и структурно оформленную опорно-сократимую систему . Опорно-сократимая система состоит из микрофибрилл, микротрубочек и ске­летных фибриллярных структур.

    Надмембранные структуры клеток эукариот можно разделить на две большие категории.

    1. Собственно надмембранный комплекс , или гликокаликс толщиной 10-20 нм. В его состав входят периферические белки мембраны, углеводные части гликолипидов и гликопротеинов. Гликокаликс играет важную роль в рецепторной функции, обеспечивает «индивидуализацию» клетки - в его составе сосредоточены рецепторы тканевой совместимости.
    2. Производные надмембранных структур . К ним относятся специфические химические соединения, не производящиеся самой клеткой. Наиболее изучены они на микроворсинках клеток кишечного эпителия млекопитающих. Здесь ими являются гидролитические ферменты, адсорбирующиеся из полости кишки. Их переход из взвешенного в фиксированное состояние создает базу для качественно иного типа пищеварения, так называемого пристеночного пищеварения. Последнее по своей сути занимает промежуточное положение между полостным и внутриклеточным.

    Функции биологической мембраны:

    1. барьерная;
    2. рецепторная;
    3. взаимодействие клеток;
    4. поддержание формы клетки;
    5. ферментативная активность;
    6. транспорт веществ в клетку и из нее.

    Мембранный транспорт:

    1. Для микромолекул. Выделяют активный и пассивный транспорт.

      К пассивному относятся осмос, диффузия, фильтрация. Диффузия - транспорт вещества в сторону меньшей концентрации. Осмос - движение воды в сторону раствора с большей концентрацией. С помощью пассивного транспорта двигаются вода, жирорастворимые вещества.

      К активному транспорту относятся: перенос веществ с участием ферментов-переносчиков и ионные насосы. Фермент-переносчик связывает переносимое вещество и «протаскивает» его внутрь клетки. Механизм ионного насоса рассматривается на примере работы калиево-натриевого насоса : во время его работы происходит перенос трех Nа+ из клетки на каждые два К+ в клетку. Насос действует по принципу открывающихся и закрывающихся каналов и по своей химической природе является белком-ферментом (расщепляет АТФ). Белок связывается с ионами натрия, изменяет свою форму, и внутри него образуется канал для прохождения ионов натрия. После прохождения этих ионов белок снова меняет форму и открывается канал, через который идут ионы калия. Все процессы энергозависимы.

      Принципиальное отличие активного транспорта от пассивного заключается в том, что он идет с затратами энергии, а пассивный - без них.

    2. Для макромолекул. Происходит с помощью активного захвата мембраной клетки веществ: фагоцитоза и пиноцитоза. Фагоцитоз - захват и поглощение клеткой крупных частиц (например, уничтожение патогенных микроорганизмов макрофагами организма человека). Впервые описан И.И. Мечниковым. Пиноцитоз - процесс захвата и поглощения клеткой капель жидкости с растворенными в ней веществами. Оба процесса происходят по сходному принципу: на поверхности клетки вещество окружается мембраной в виде вакуоли, которая перемещается внутрь. Оба процесса связаны с затратой энергии.

    Цитоплазма. В цитоплазме различают основное вещество (гиалоплазму, матрикс), органеллы (органоиды) и включения.

    Основное вещество заполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Она образует внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает их взаимодействие друг с другом. Цитоплазма ведет себя как коллоид, способный переходить из состояния ге­ля в золь и обратно. Золь - это состояние вещества, характеризующееся низкой вязкостью и лишенное сшивок между микрофиламентами. Гель - это состояние вещества, характеризующееся высокой вязкостью и наличием связей между микрофиламентами. Наружный слой цитоплазмы, или эктоплазма, отличается более высокой плотностью и лишена гранул. Примеры процессов, осуществляющихся в матриксе: гликолиз, распад веществ до мономеров.

    Органеллы - структуры цитоплазмы, выполняющие в клетке специфические функции.

    Органеллы бывают:

    1. мембранные (одно- и двумембранные (митохондрии и пластиды)) и немембранные.
    2. органеллы общего значения и специальные. К первым относятся: ЭПС, аппарат Гольджи, митохондрии, рибосомы и полисомы, лизосомы, клеточный центр, микротельца, микротрубочки, микрофиламенты. Органеллы специаль­ного назначения (присутствуют в клетках, выполняющих специализированные функции): реснички и жгутики (движение клетки), микроворсинки, синаптические пузырьки, миофибриллы.
    органоид строение функции
    мембранные
    ЭПС система соединенных между собой канальцев и полостей различной формы и величины. Образует непрерывную структуру с ядерной мембраной. Бывает двух видов: гладкая и гранулярная или шероховатая (на ней находятся рибосомы) синтез и внутриклеточный транспорт белков (шероховатая); синтез и распад липидов и углеводов (гладкая)
    Аппарат Гольджи (пластинчатый комплекс) состоит из полостей, уложенных в стопку. На концах полостей могут образовываться пузырьки, отделяющиеся от них сортировка и упаковка макромолекул, транспорт веществ, участие в образование лизосом
    Лизосомы это пузырьки диаметром 5 мкм, содержащие гидролитические ферменты расщепление органических веществ, старых частей клетки, целых клеток и даже отдельных органов (хвост головастика)
    Вакуоль только у растений (до 90% объема клетки). Крупная полость в центре клетки, заполненная клеточным соком резервуар воды и растворенных в ней веществ, окраска, внутреннее (тургорное) давление клетки
    Митохондрии палочковидные, нитевидные или шаровидные органеллы с двойной мембраной - наружной гладкой и внутренней с многочисленными выростами (кристами). Между мембранами находится пространство. На внутренней мембране находятся ферменты. Внутри находится вещество, называемое матриксом, содержащее ДНК, РНК и митохондриальные рибосомы участвуют в энергетическом обмене клетки
    Пластиды только у растений. Лейкопласты (бесцветные) обычны в органах растений, скрытых от солнечного света. Хлоропласты (зеленые) имеют две мембраны, внутри - матрикс. Хорошо развита внутренняя мембрана, имеющая складки, между которыми находятся пузырьки - тилакоиды. Часть тилакоидов собрано наподобие стопки в группы, называемые гранами. Хромопласты (желто-оранжевые) встречаются в окрашенных органах - лепестках, плодах, корнеплодах и осенних листьях. Внутренняя мембрана обычно отсутствует фотосинтез, окраска, запас веществ
    немембранные
    клеточный центр есть у животных и низших растений; у высших растений отсутствует. Состоит из 2 центриолей и микротрубочек организация цитоскелета клетки; участие в делении клетки (образует веретено деления)
    рибосомы и полисомы это сферические структуры. Состоят из 2 субъединиц - большой и малой. Содержат р-РНК. Находятся на ЭПС или свободно в цитоплазме. Полисома - это структура, состоящая из одной и-РНК и нескольких рибосом, расположенных на ней. синтез белка
    опорно-двигательная система образует цитоскелет клетки. В него входят микротельца, микротрубочки, микрофиламенты. Микрофиламенты состоят из глобулярных молекул белка актина. Микротрубочки - полые белковые цилиндры, находящиеся в ресничке или жгутике. определяют форму клеток, участвуют в движении клетки, опорная функция

    Клеточные включения - это непостоянные образования, то возникающие, то исчезающие в процессе жизнедеятельности клетки, т.е. это продукты клеточного метаболизма. Чаще всего находятся в цитоплазме, реже в органеллах или в ядре. Включения представлены главным образом гранулами (полисахариды: гликоген у животных, крахмал у растений; реже белки - в цитоплазме яйцеклеток), каплями (липиды) и кристаллами (оксалат кальция). К клеточным включениям относятся также некоторые пигменты - желтый и коричневый липофусцин (накапливается в процессе старения клеток), ретинин (входит в состав зрительного пигмента), гемоглобин, меланин и т.п.


    Ядро. Основная функция ядра - хранение наследственной информации. Компонентами ядра являются ядерная оболочка, нуклеоплазма (ядерный сок), ядрышко (одно или два), глыбки хроматина (хромосомы). Ядерная оболочка эукариотической клетки обособляет наследственный материал (хромосомы) от цитоплаз­мы, в которой осуществляются многообразные метаболические реакции. Ядерная оболочка состоит из 2-х биологических мембран. Через определенные интервалы обе мембраны сливаются друг с другом, образуя поры - это отверстия в ядерной мембране. Через них происходит обмен веществ с цитоплазмой.

    Основу нуклеоплазмы составляют белки, в том числе и фибриллярные. Она содержит ферменты, необходимые для синтеза нуклеиновых кислот и рибосом. Также в ядерном соке содержится РНК.

    Ядрышки - это место сборки рибосом, это непостоянные структуры ядра. Они исчезают в начале деления клетки и вновь появляются к его концу. В ядрышке различают аморфную часть и ядрышковую нить. Обе составляющие построены из филаментов и гранул, состоящие из белков и РНК.

    Хромосомы. Хромосомы состоят из ДНК, которая окружена белками двух типов: гистоновыми (основными) и негистоновыми (кислыми). Хромосомы могут находиться в двух структурно-функциональных состояниях: спирализованном и деспирализованном . Частично или полностью деконденсированное (деспирализованное) состояние называется рабочим, т.к. в этом состоянии происходят процессы транскрипции и редупликации. Неактивное состояние - в состоянии метаболического покоя при максимальной их конденсации, когда они выполняют функцию распределения и переноса генетического материала в дочерние клетки.

    В интерфазе хромосомы представлены клубком тонких нитей, который различим только под электронном микроскопом. Во время деления хромосомы укорачиваются и утолщаются, они спирализованы и хорошо видны под микроскопом (лучше всего в стадии метафазы). В это время хромосомы состоят из двух хроматид, связанных первичной перетяжкой, которая делит каждую хроматиду на два участка - плеча.

    По месту расположения первичной перетяжки выделяют несколько видов хромосом:

    1. метацентрические или равноплечие (оба плеча хромосомы имеют одинаковую длину);
    2. субметацентрические или неравноплечие (плечи хромосомы несколько отличаются по размеру);
    3. акроцентрические (одно плечо очень короткое).

    Метаболизм клетки.

    Это одно из основных свойств живого. Метаболизм возможен благодаря тому, что живые организмы являются открытыми системами, т.е. между организмом и окружающей средой постоянно происходит обмен веществ и энергией. Метаболизм протекает во всех органах, тканях и клетках, обеспечивая самообновление морфологических структур и химического состава цитоплазмы.

    Метаболизм складывается из двух процессов: ассимиляции (или пластиче­ского обмена) и диссимиляции (или энергетического обмена). Ассимиляция (пластический обмен) - совокупность всех процессов биосинтеза, проходящих в живых организмах. Диссимиляция (энергетический обмен) - совокупность всех процессов распада сложных веществ на простые с выделением энергии, проходящих в живых организмах.

    По способу ассимиляции и в зависимости от вида используемой энергии и исходных веществ, организмы делятся на автотрофов (фотосинтетики и хемосинтетики) и гетеротрофов. Автотрофы - это организмы, самостоятельно синтезирующие органические вещества, используя для этого энергию Солнца (фотоавтотрофы ) или энергию окисления неорганических веществ (хемоавтотрофы ). К автотрофам относят растения, бактерии, сине-зеленые. Гетеротрофы - это организмы, получающие готовые органические вещества вместе с пищей. К ним относятся животные, грибы, бактерии.

    Роль автотрофов в круговороте веществ огромна: 1) они трансформируют энергию Солнца в энергию химических связей органических веществ, которая используется всеми остальными живыми существами нашей планеты; 2) насыщают атмосферу кислородом (фотоавтотрофы), который необходим большинству гетеротрофов для получения энергии путем окисления органических веществ. Гетеротрофы также играют важную роль в круговороте веществ: они выделяют неорганические вещества (углекислый газ и вода), используемые автотрофами.


    Диссимиляция. Все гетеротрофные организмы получают энергию в результате окислительно-восстановительных реакций, т.е. таких, в которых электроны переносятся от доноров электронов-восстановителей к акцепторам электронов - окислителям.

    Энергетический обмен у аэробных организмов складывается из трех этапов:

    1. подготовительного , который проходит в желудочно-кишечном тракте или в клетке под действием ферментов лизосом. Во время этого этапа происходит распад всех биополимеров до мономеров: белки распадаются сначала до пептидов, затем - до аминокислот; жиры - до глицерина и жирных кислот; углеводы - до моносахаридов (до глюкозы и ее изомеров).
    2. бескислородного (или анаэробного), который проходит в матриксе цитоплазмы. Этот этап называют гликолизом . Под действием ферментов глюкоза расщепляется до двух молекул ПВК. При этом выделяется 4 атома Н, которые акцептируются веществом под названием НАД + (никотинамидадениндинуклеотид). При этом НАД + восстанавливается в НАД*Н (эта запасенная энергия в дальнейшем будет использоваться для синтеза АТФ). Также за счет распада глюкозы образуется 4 молекулы АТФ из АДФ. При этом 2 молекулы АТФ расходуется во время химических реакций гликолиза, поэтому суммарный выход АТФ после гликолиза составляет 2 молекулы АТФ.
    3. кислородного , который проходит в митохондриях. Две молекулы ПВК поступают на ферментативный кольцевой «конвейер», который называют циклом Кребса или циклом трикарбоновых кислот. Все ферменты этого цикла находятся в митохондриях.

    Попадая в митохондрии, ПВК окисляется и превращается в богатое энергией вещество - ацетил коэнзим А (это производное уксусной кислоты). Далее это вещество реагирует с ЩУК, образуя лимонную кислоту (цитрат), коэнзим А, протоны (акцептируются НАД + , который превращается в НАД*Н) и углекислый газ. В дальнейшем лимонная кислота окисляется и вновь превращается в ЩУК, которая реагирует с новой молекулой ацетил коэнзима А, и весь цикл повторяется заново. Во время этого процесса накапливается энергия в виде АТФ и НАД*Н.

    Следующая стадия - превращение энергии, запасенной в НАД*Н, в энергию связей АТФ. В ходе этого процесса электроны от НАД*Н перемещаются по многоступенчатой цепи переноса электронов к конечному акцептору - молекулярному кислороду. При переходе электронов со ступени на ступень выделяется энергии, которая используется для превращения АДФ в АТФ. Поскольку в этом процессе окисление сопряжено с фосфорилированием, то весь процесс называют окислительным фосфорилированием (этот процесс был открыт русским ученым В.А. Энгельгардтом; он происходит на внутренней мембране митохондрий). В конце этого процесса образуется вода. Во время кислородного этапа образуется 36 молекул АТФ.

    Таким образом, конечными продуктами распада глюкозы являются углекислый газ и вода. При полном распаде одной молекулы глюкозы выделяется 38 молекул АТФ. При нехватке кислорода в клетке происходит окисление глюкозы с образованием молочной кислоты (например, при интенсивной работе мышц - бег и т.п.). В результате этого образуется только две молекулы АТФ.

    Необходимо отметить, что источником энергии могут служить не только молекулы глюкозы. Жирные кислоты также окисляются в клетке до ацетил коэнзима А, поступающий в цикл Кребса; при этом также происходит восстановление НАД + в НАД*Н, который участвует в окислительном фосфорилировании. При острой нехватке в клетке глюкозы и жирных кислот окислению подвергаются многие аминокислоты. Их них также образуется ацетил коэнзим А или органические кислоты, участвующие в цикле Кребса.

    При анаэробном способе диссимиляции отсутствует кислородный этап, и энергетический обмен у анаэробов получил название «брожение». Конечные продукты диссимиляции при брожении - молочная кислота (молочно-кислые бактерии) или этиловый спирт (дрожжи). При таком типе обмена из одной молекулы глюкозы выделяется 2 молекулы АТФ.

    Т.о., аэробное дыхание почти в 20 раз энергетически более выгодно, чем анаэробное.


    Фотосинтез. Жизнь на Земле полностью зависит от фотосинтеза растений, поставляющих органическое вещество и О 2 всем организмам. При фотосинтезе происходит преобразование световой энергия в энергию химических связей.

    Фотосинтез - это образование органических веществ из неорганических при участии солнечной энергии. Этот процесс был открыт К.А. Тимирязевым в 19-ом веке. Суммарное уравнение фотосинтеза: 6СО 2 + 6Н 2 О = С 6 Н 12 О 6 + 6О 2 .

    Фотосинтез осуществляется в растениях, имеющих пластиды - хлоропласты . Хлоропласты имеют две мембраны, внутри - матрикс. У них хорошо развита внутренняя мембрана, имеющая складки, между которыми находятся пузырьки - тилакоиды . Часть тилакоидов собрано наподобие стопки в группы, называемые гранами . В гранах находятся все фотосинтетические структуры; в строме, окружающей тилакоиды, находятся ферменты, восстанавливающие углекислый газ до глюкозы. Основной пигмент хлоропластов - хлорофилл , по строению напоминающий гем человека. В состав хлорофилла входит атом магния. Хлорофилл поглощает синие и красные лучи спектра и отражает зеленые. Также могут присутствовать другие пигменты: желтые каротиноиды и красные или синие фикобилины. Каротиноиды маскируются хлорофиллом; они поглощают свет, не доступный для других пигментов и передают его хлорофиллу.

    В составе хлоропластов есть две фотосистемы разного строения и состава: фотосистема I и II. Фотосистема I имеет реакционный центр, представляющий собой молекулы хлорофилла в комплексе с особым белком. Этот комплекс поглощает свет с длиной волны 700 нм (поэтому его называют фотохимическим центром Р700). В фотосистеме II также имеется реакционный центр - фотохимический центр Р680.

    Фотосинтез имеет две стадии: световую и темновую.

    Световая стадия. Энергия света поглощается хлорофиллом и переводит его в возбужденное состояние. Электрон в составе фотохимического центра Р700 поглощает свет, перемещается на более высокий энергетический уровень и переносится на НАДФ + (никотинамидадениндинуклеотидфосфат), восстанавливая его в НАДФ*Н. В молекуле хлорофилла фотосистемы I остаются «дыры» - незаполненные места для электронов. Эти «дыры» заполняются электронами, пришедшими из фотосистемы II. Под действием света электрон хлорофилла в фотохимическом центре Р680 также приходит в возбужденное состояние и начинает перемещаться по цепи переносчиков электронов. В конечном итоге этот электрон приходит в фотосистему I, заполняя в ней свободные места. При этом электрон теряет часть энергии, которая расходуется на образование АТФ из АДФ.

    Также в хлоропластах под действием солнечного света происходит расщепление воды - фотолиз , при котором образуются электроны (поступают в фотосистему II и занимают место электронов, ушедших в цепь переносчиков), протоны (акцептируются НАДФ +) и кислород (как побочный продукт):

    2Н 2 О = 4Н + + 4е – + О 2

    Таким образом, в результате световой стадии происходит накопление энергии в виде АТФ и НАДФ*Н, а также образование кислорода.

    Темновая стадия. Не требует наличия света. Молекула углекислого газа при помощи ферментов реагирует с 1,5 рибулезодифосфатом (это производное рибозы). Образуется промежуточное соединение С 6 , которое разлагается водой на две молекулы фосфоглицериновой кислоты (С 3). Из этих веществ путем сложных реакций синтезируется фруктоза, которая далее превращается в глюкозу. Для этих реакций требуется 18 молекул АТФ и 12 молекул НАДФ*Н. Из глюкозы в растениях образуется крахмал и целлюлоза. Фиксация СО 2 и превращение его в углеводы носит циклический характер и называется циклом Кальвина .

    Значение фотосинтеза для сельского хозяйства велико - именно от него зависит урожай сельскохозяйственных культур. При фотосинтезе растение использует лишь 1-2% солнечной энергии, поэтому имеется огромная перспектива повышения урожайности благодаря селекции сортов с более высокой эффективностью фотосинтеза. Для повышения эффективности фотосинтеза применяют: искусственное освещение (дополнительная подсветка лампами дневного света в пасмурные дни или весной и осенью) в теплицах; отсутствие затенения культурных растений, соблюдение необходимых расстояний между растениями и т.п.


    Хемосинтез . Это процесс образования органических веществ из неорганических при использовании энергии, полученной при окислении неорганических веществ. Эта энергия запасается в виде АТФ. Хемосинтез открыт русским микробиологом С.Н. Виноградским в 19-ом веке (1889-1890 гг.). Этот процесс возможен у бактерий: серобактерии (окисляют сероводород до серы и даже до серной кислоты); нитрифицирующие бактерии (окисляют аммиак до азотной кислоты).


    Репликация ДНК (удвоение ДНК). В результате этого процесса образуется две двойные спирали ДНК, которые ничем не отличаются от исходной (материнской). Сначала с помощью особого фермента (геликаза) двойная спираль ДНК расплетается в точках начала репликации. Затем при участии фермента ДНК-полимеразы происходит синтез дочерних цепей ДНК. На одной из цепей процесс идет непрерывно - эта цепь называется лидирующей. Вторая цепь ДНК синтезируется короткими фрагментами (фрагментами Оказаки ), которые «сшиваются» вместе с помощью специальных ферментов. Эта цепь называется отстающей или запаздывающей.

    Участок между двумя точками, в которых начинается синтез дочерних цепей, называется репликоном . У эукариот в ДНК имеется много репликонов, у прокариот только один репликон. В каждом репликоне можно видеть репликативную вилку - ту часть молекулы ДНК, которая уже расплелась.

    Репликация основана на ряде принципов:

    1. комплементарности (А-Т, Ц-Г) антипараллельности. Каждая цепь ДНК имеет определенную ориентацию: один конец несет ОН-группу, присоединенную к 3"-углероду в сахаре дезоксирибозе, на другом конце цепи находится остаток фосфорной кислоты в 5"-положении сахара. Две цепи ДНК ориентированы в противоположных направлениях, т.е. антипараллельно. Фермент ДНК-полимераза может передвигаться вдоль матричных цепей лишь в одном направлении: от их 3"-концов к 5"-концам. Поэтому в процессе репликации одновременный синтез новых цепей идет антипараллельно.
    2. полуконсервативности. Образуются две дочерние спирали, каждая из которых сохраняет (консервирует) в неизменном виде одну из половин материнской ДНК
    3. прерывистости. Чтобы новые нити ДНК могли образоваться, материнские цепи должны быть полностью раскручены и вытянуты, что невозможно; поэтому репликация начинается одновременно в нескольких местах.

    Биосинтез белка. Примером пластического обмена у гетеротрофных организмов является биосинтез белка. Все основные процессы в организме связаны с белками, причем в каждой клетке постоянно происходит синтез белков, свойственных данной клетке и необходимых в данный период жизни клетки. Информация о молекуле белка зашифрована в молекуле ДНК с помощью триплетов или кодонов.

    Генетический код - это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в и-РНК.

    Свойства кода:

    1. Триплетность - каждая аминокислота зашифрована последовательностью из трех нуклеотидов. Эта последовательность называется триплетом или кодоном.
    2. Вырожденность или избыточность - каждая аминокислота шифруется более чем одним кодоном (от 2 до 6). Исключение составляют метионин и триптофан - каждая из них кодируются одним триплетом.
    3. Однозначность - каждый кодон шифрует только одну аминокислоту.
    4. Между генами имеются «знаки препинания» - это три специальных триплета (УАА, УАГ, УГА), каждый из которых не кодирует аминокислоты. Эти триплеты находятся в конце каждого гена. Внутри гена «знаков препинания» нет.
    5. Универсальность - гентический код един для всех живых существ планеты Земля.

    В биосинтезе белка различают три этапа - транскрипцию, посттранскрипционные процессы и трансляцию.

    Транскрипция - это процесс синтеза и-РНК, осуществляемый ферментом РНК-полимера-зой. Происходит в ядре. Транскрипция осуществляется по правилу комплементарности. По длине и-РНК соответствует одному или нескольким генам. В процессе транскрипции можно выделить 4 стадии:

    1. связывание РНК-полимеразы с промотором (это участок для прикрепления фермента).
    2. инициация - начало синтеза.
    3. элонгация - рост цепи РНК; последовательное присоединение нуклеотидов друг к другу в том порядке, в котором стоят комплементарные нуклеотиды нити ДНК. Ее скорость - до 50 нуклеотидов в секунду.
    4. терминация - завершение синтеза пре-и-РНК.

    Посттранскрипционные процессы. После образования пре-и-РНК начинается созревание или процессинг и-РНК. При этом из молекулы РНК удаляются интронные участки с последующим соединением экзонных участков (этот процесс называют сплайсингом ). После этого зрелая и-РНК выходит из ядра и направляется к месту синтеза белка (к рибосомам).

    Трансляция - это синтез полипептидных цепей белков, выполняемый по матрице и-РНК в рибосомах.

    Аминокислоты, необходимые для синтеза белка, доставляются в рибосомы с помощью т-РНК. Молекула транспортной РНК имеет форму листа клевера, на вершине которого имеется последовательность из трех нуклеотидов, комплементарных нуклеотидам кодона в и-РНК. Эта последовательность называется антикодоном . Фермент (кодаза) опознает т-РНК и присоединяет к ней соответствующую аминокислоту (тратится энергия одной молекулы АТФ).

    Биосинтез белка начинается с того (у бактерий), что кодон АУГ, расположенный на первом месте в копии с каждого гена, занимает место на рибосоме в донорном участке и к нему присоединяется т-РНК, несущая формилметионин (это измененная форма аминокислоты метионина). После завершения синтеза белка формилметионин отщепляется от полипептидной цепочки.

    На рибосоме имеются два участка для связывания двух молекул т-РНК: донорный и акцепторный . В акцепторный участок поступает т-РНК с аминокислотой и присоединяется к своему кодону и-РНК. Аминокислота этой т-РНК присоединяет к себе растущую цепь белка, между ними возникает пептидная связь. т-РНК, к которой присоединен растущий белок, перемещается вместе с кодоном и-РНК в донорный участок рибосомы. В освободившийся акцепторный участок приходит новая т-РНК с аминокислотой, и все повторяется заново. Когда на рибосоме оказывается один из знаков препинания, ни одна из т-РНК с аминокислотой не может занять акцепторный участок. Полипептидная цепь отрывается и покидает рибосому.

    Клетки разных тканей организма продуцируют разные белки (амилаза - клетки слюнных желез; инсулин - клетки поджелудочной железы и т.п.). При этом все клетки организма образовались из одной оплодотворенной яйцеклетки путем многократного деления с помощью митоза, т.е. имеют одинаковый генетический набор. Эти отличия связаны с тем, что в разных клетках транскрибируются разные участки ДНК, т.е. образуются разные и-РНК, по которым и синтезируются белки. Специализация клетки определяется не всеми генами, а только теми, с которых информация была прочтена и реализована в белки. Т.о., в каждой клетке реализуется только часть наследственной информации, а не вся информация целиком.


    Регуляции генной активности при синтезе отдельных белков на примере бактерий (схема Ф.Жакоба и Ж Моно).

    Известно, что пока в питательной среде, где обитают бактерии, не добавят сахар, в клетке бактерий нет ферментов, необходимых для его расщепления. Но через несколько секунд после добавления сахара в клетке синтезируются все необходимые ферменты.

    Ферменты, участвующие в одной цепи превращения субстрата в конечный продукт, закодированы в расположенных друг за другом структурных генах одного оперона. Оперон - это группа генов, несущих информацию о структуре белков, необходимых для выполнения одной функции. Между структурными генами и промотором (место посадки РНК-полимеразы) есть участок, называемый оператором . Он так называется, потому что именно с него начинается синтез и-РНК. С оператором взаимодействует специальный белок - репрессор (подавитель) . Пока репрессор находится на операторе, синтез и-РНК не может начаться.

    Когда в клетку попадает субстрат, для расщепления которого нужны белки, закодированные в структурных генах данного оперона, одна из молекул субстрата взаимодействует с репрессором. Репрессор теряет способность взаимодействовать с оператором и отходит от него; начинается синтез и-РНК и образование соответствующих белков на рибосоме. Как только последняя молекула субстрата будет преобразована в конечное вещество, освобожденный репрессор возвратится на оператор и заблокирует синтез и-РНК.


    Использованная литература:

    1. Ю. Ченцов «Введение в клеточную биологию» (2006)
    2. В.Н. Ярыгин (редактор) «Биология» (в двух томах, 2006)
    3. О.В. Александровская и др. «Цитология, гистология и эмбриология» (1987)
    4. А.О. Рувимский (редактор) «Общая биология» (учебник для 10-11 классов с углубленным изучением биологии) - на мой взгляд, это один из лучших учебников по общей биологии для абитуриентов, хотя и не без недостатков.

    Для прогресса гистологии, цитологии и эмбриологии большое значе­ние имеет внедрение достижений физики и химии, новых методов смеж­ных наук - биохимии, молекулярной биологии, генной инженерии.

    Современные методы исследования позволяют изучать ткани не только как единое целое, но и выделять из них отдельные типы клеток для изуче­ния их жизнедеятельности в течение длительного времени, выделять отдель­ные клеточные органеллы и составляющие их макромолекулы (например, ДНК), исследовать их функциональные особенности.

    Такие возможности открылись в связи с созданием новых приборов и технологий - различных типов микроскопов, компьютерной техники, рен-тгеноструктурного анализа, применения метода ядерно-магнитного резо­нанса (ЯМР), радиоактивных изотопов и авторадиографии, электрофореза и хроматографии, фракционирования клеточного содержимого с помощью ультрацентрифугирования, разделения и культивирования клеток, получе­ния гибридов; использования биотехнологических методов - получения гибридом и моноклональных антител, рекомбинантных ДНК и др.

    Таким образом, биологические объекты можно изучать на тканевом, клеточном, субклеточном и молекулярном уровнях. Несмотря на внедрение в естественные науки разнообразных биохимических, биофизических, фи­зических и технологических методов, необходимых для решения многих вопросов, связанных с жизнедеятельностью клеток и тканей, гистология в основе своей остается морфологической наукой со своим набором методов. Последние позволяют охарактеризовать процессы, происходящие в клетках и тканях, их структурные особенности.

    Главными этапами цитологического и гистологического анализа явля­ются выбор объекта исследования, подготовка его для изучения в микро­скопе, применение методов микроскопирования, качественный и количе­ственный анализ изображений.

    Объектами исследования служат живые и фиксированные клет­ки и ткани, их изображения, полученные в световых и электронных мик­роскопах или на телевизионном экране дисплея. Существует ряд методов, позволяющих проводить анализ указанных объектов.

    Методы микроскопирования гистологических препаратов

    Основными методами изучения биологических микрообъектов являют­ся световая и электронная микроскопия, которые широко используют"ся в экспериментальной и клинической практике.

    Микроскопирование - основной метод изучения микрообъектов, ис­пользуемый в биологии более 300 лет. С момента создания и применения первых микроскопов они постоянно совершенствовались. Современные микроскопы представляют собой разнообразные сложные оптические си­стемы, обладающие высокой разрешающей способностью. Размер самой маленькой структуры, которую можно видеть в микроскопе, определяется наименьшим разрешаемым расстоянием (d o ), которое в основном зависит от длины волны света (\) и длины волн электромагнитных колебаний потока электронов и др. Эта зависимость приближенно определяется фор­мулой d 0 = 1 / 2 \. Таким образом, чем меньше длина волны, тем меньше разрешаемое расстояние и тем меньшие по размерам микроструктуры можно видеть в препарате. Для изучения гистологических препаратов при­меняют разнообразные виды световых микроскопов и электронные мик­роскопы.

    Рис. 1. Микроскопы для биологичес­ких исследований.

    А - световой биологический микроскоп «Биолам-С»: 1 - основание; 2 - тубусо-держатель; 3 - наклонный тубус; 4 - оку­ляр, 5 - револьвер; 6 - объективы; 7 - столик; 8 - конденсор с ирисовой диаф­рагмой; 9 - винт конденсора; 10 - зерка­ло; 11 - микрометрический винт; 12 - макрометрический винт. Б - электронный микроскоп ЭМВ-100АК с автоматизиро­ванной системой обработки изображений: 1 - колонка микроскопа (с электронно-оптической системой и камерой для образ­цов); 2 - пульт управления; 3 - камера с люминесцентным экраном; 4 - блок ана­лиза изображений; 5 - датчик видеосигна­ла.

    Световая микроскопия. Для изучения гистологических микрообъектов применяют обычные световые микроскопы и их разновидности, в которых используются источники света с различными длинами волн. В обычных све­товых микроскопах источником освещения служит естественный или ис­кусственный свет (рис. 1, А). Минимальная длина волны видимой части спектра равна примерно 0,4 мкм. Следовательно, для обычного светового микроскопа наименьшее разрешаемое расстояние равно приблизительно 0,2 мкм ( d o = "/,- 0,4 мкм = 0,2 мкм), а общее увеличение (произведение увеличения объектива на увеличение окуляра) может быть 1500-2500.

    Таким образом, в световом микроскопе можно видеть не только отдель­ные клетки размером от 4 до 150 мкм, но и их внутриклеточные структу­ры - органеллы, включения. Для усиления контрастности микрообъектов применяют их окрашивание.

    Ультрафиолетовая микроскопия . Это разновидность световой микроско­пии. В ультрафиолетовом микроскопе используют более короткие ультрафи­олетовые лучи с длиной волны около 0,2 мкм. Разрешаемое расстояние здесь в 2 раза меньше, чем в обычных световых микроскопах, и составляет при­близительно 0,1 мкм (d o = V 2 - 0,2 мкм = 0,1 мкм). Полученное в ультрафи­олетовых лучах невидимое глазом изображение преобразуется в видимое с помощью регистрации на фотопластинке или путем применения специаль­ных устройств (люминесцентный экран, электронно-оптический преобра­зователь).

    Флюоресцентная (люминесцентная) микроскопия. Явления флюоресцен­ции заключаются в том, что атомы и молекулы ряда веществ, поглощая коротковолновые лучи, переходят в возбужденное состояние. Обратный пе­реход из возбужденного состояния в нормальное происходит с испускани­ем света, но с большей длиной волны. В флюоресцентном микроскопе в качестве источников света для возбуждения флюоресценции применяют ртутные или ксеноновые лампы сверхвысокого давления, обладающие вы­сокой яркостью в области спектра 0,25-0,4 мкм (ближние ультрафиолето­вые лучи) и 0,4-0,5 мкм (сине-фиолетовые лучи). Длина световой волны флюоресценции всегда больше длины волны возбуждающего света, поэто­му их разделяют с помощью светофильтров и изучают изображение объекта только в свете флюоресценции. Различают собственную, или первич­ную, и наведенную, или вторичную, флюоресценцию. Любая клетка живого организма обладает собственной флюоресценцией, однако она часто бывает чрезвычайно слабой.

    Первичной флюоресценцией обладают серотонин, катехолами-ны (адреналин, норадреналин), содержащиеся в нервных, тучных и других клетках, после фиксации тканей в парах формальдегида при 60-80 °С (ме­тод Фалька).

    Вторичная флюоресценция возникает при обработке препаратов специальными красителями - флюорохромами.

    Существуют различные флюорохромы, которые специфически связы­ваются с определенными макромолекулами (акридин оранжевый, родамин, флюоресцеин и др.). Например, при обработке препаратов чаще всего упот­ребляется флюорохром акридиновый оранжевый. В этом случае ДНК и ее соединения в клетках имеют ярко-зеленое, а РНК и ее производные - ярко-красное свечение. Таким образом, спектральный состав излучения несет информацию о внутреннем строении объекта и его химическом со­ставе. Вариант метода флюоресцентной микроскопии, при котором и воз­буждение, и излучение флюоресценции происходят в ультрафиолетовой области спектра, получил название метода ультрафиолетовой флюоресцент­ной микроскопии .

    Фазово-контрастная микроскопия. Этот метод служит для получения контрастных изображений прозрачных и бесцветных живых объектов, неви­димых при обычных методах микроскопирования. Как уже указывалось, в обычном световом микроскопе необходимая контрастность структур дости­гается с помощью окрашивания. Метод фазового контраста обеспечивает контрастность изучаемых неокрашенных структур за счет специальной коль­цевой диафрагмы, помещаемой в конденсоре, и так называемой фазовой пластинки, находящейся в объективе. Такая конструкция оптики микроско­па дает возможность преобразовать не воспринимаемые глазом фазовые изменения прошедшего через неокрашенный препарат света в изменение его амплитуды, т.е. яркости получаемого изображения. Повышение контра­ста позволяет видеть все структуры, различающиеся по показателю прелом­ления. Разновидностью метода фазового контраста является метод фазово-темнополъного контраста, дающий негативное по сравнению с позитивным фазовым контрастом изображение.

    Микроскопия в темном поле. В темнопольном микроскопе только свет, который дает дифракцию структур в препарате, достигает объектива. Про­исходит это благодаря наличию в микроскопе специального конденсора, который освещает препарат строго косым светом; лучи от осветителя на­правляются сбоку. Таким образом, поле выглядит темным, а мелкие части­цы в препарате отражают свет, который далее попадает в объектив. Разре­шение этого микроскопа не может быть лучше, чем у светлопольного мик­роскопа, так как используется такая же длина волны. Но здесь достигается больший контраст. Он используется для изучения живых объектов, автора­диографических объектов, например зерен серебра, которые выглядят свет­лыми на темном поле. В клинике его применяют для изучения кристаллов в моче (мочевая кислота, оксалаты), для демонстрации спирохет, в частно­сти treponema pallidum , вызывающей сифилис и др.

    Интерференционная микроскопия. Разновидностями фазово-контрастного микроскопа являются интерференционный микроскоп, который предназначен для количественного определения массы ткани, и диффе­ренциальный интерференционный микроскоп (с оптикой Номарского), который специально используют для изучения рельефа по­верхности клеток и других биологических объектов.

    В интерференционном микроскопе пучок света от осветителя разделя­ется на два потока: один проходит через объект и изменяет по фазе колеба­ния, второй идет, минуя объект. В призмах объектива оба пучка соединяют­ся и интерферируют между собой. В результате строится изображение, в котором участки микрообъекта разной толщины и плотности различаются по степени контрастности. Проведя количественную оценку изменений, определяют концентрацию и массу сухого вещества.

    Фазово-контрастный и интерференционный микроскопы позволяют изучать живые клетки. В них используется эффект интерференции, возника­ющий при комбинации двух наборов волн, который создает изображение микроструктур. Преимуществом фазово-контрастной, интерференционной и темнопольной микроскопии является возможность наблюдать клетки в про­цессе движения и митоза. При этом регистрация движения клеток может производиться с помощью цейтраферной (покадровой) микрокиносъемки.

    Поляризационная микроскопия. Поляризационный микроскоп является модификацией светового микроскопа, в котором установлены два поляри­зационных фильтра - первый (поляризатор) между пучком света, и объек­том, а второй (анализатор) между линзой объектива и глазом. Через пер­вый фильтр свет проходит только в одном направлении, второй фильтр имеет главную ось, которая располагается перпендикулярно первому филь­тру, и он не пропускает свет. Получается эффект темного поля. Оба фильт­ра могут вращаться, изменяя направление пучка света. Если анализатор повернуть на 90° по отношению к поляризатору, то свет проходить через них не будет. Структуры, содержащие продольно ориентированные молеку­лы (коллаген, микротрубочки, микрофиламенты), и кристаллическиеструктуры (в клетках Лейдига 1) при изменении оси вращения проявляются как светящиеся. Способность кристаллов или паракристаллических образо­ваний к раздвоению световой волны на обыкновенную и перпендикуляр­ную к ней называется двойным лучепреломлением. Такой способностью об­ладают фибриллы поперечнополосатых мышц.

    Электронная микроскопия. Большим шагом вперед в развитии техники микроскопии были создание и применение электронного микроскопа (см. рис. 1, Б). В электронном микроскопе используется поток электронов с бо­лее короткими, чем в световом микроскопе, длинами волн. При напряже­нии 50 000 В длина волны электромагнитных колебаний, возникающих при движении потока электронов в вакууме, равна 0,0056 нм. Теоретически рас­считано, что разрешаемое расстояние в этих условиях может быть около 0,002 нм, или 0,000002 мкм, т.е. в 100 000 раз меньше; чем в световом мик­роскопе. Практически в современных электронных микроскопах разрешае­мое расстояние составляет около 0,1-0,7 нм.

    В настоящее время широко используются трансмиссионные (просвечивающие) электронные микроскопы (ТЭМ) и ска­нирующие (растровые) электронные микроскопы (СЭМ). С помощью ТЭМ можно получить лишь плоскостное изображение изучае­мого микрообъекта. Для получения пространственного представления о структурах применяют СЭМ, способные создавать трехмерное изображение. Растровый электронный микроскоп работает по принципу сканирования электронным микрозондом исследуемого объекта, т. е. последовательно «ощупывает» остро сфокусированным электронным пучком отдельные точ­ки поверхности. Для исследования выбранного участка микрозонд двигает­ся по его поверхности под действием отклоняющих катушек (принцип те­левизионной развертки). Такое исследование объекта называется сканиро­ванием (считыванием), а рисунок, по которому движется микрозонд, - растром. Полученное изображение выводится на телевизионный экран, электронный луч которого движется синхронно с микрозондом.

    Главными достоинствами растровой электронной микроскопии являют­ся большая глубина резкости, широкий диапазон непрерывного изменения увеличения (от десятков до десятков тысяч раз) и высокая разрешающая способность.

    Электронная микроскопия по методу замораживания - скалывания применяется для изучения деталей строения мембран и межклеточных соединений. Для изготов­ления сколов клетки замораживают при низкой температуре (-160 °С). При иссле­довании мембраны плоскость скола проходит через середину бислоя липидов. Далее на внутренние поверхности полученных половинок мембран напыляют металлы (платина, палладий, уран), изучают их с помощью ТЭМ и микрофотографии.

    Метод криоэлектронной микроскопии. Быстро замороженный тонкий слой (око­ло 100 нм) образца ткани помещают на микроскопическую решетку и исследуют в вакууме микроскопа при -160 С С.

    Метод электронной микроскопии «замораживание - травление» применяют для изучения внешней поверхности мембран клеток. После быстрого замораживания клеток при очень низкой температуре блок раскалывают лезвием ножа. Образующие­ся кристаллы льда удаляют путем возгонки воды в вакууме. Затем участки клеток оттеняют, напыляя тонкую пленку тяжелого металла (например, платины). Метод позволяет выявлять трехмерную организацию структур.

    Таким образом, методы замораживания - скалывания и замораживания - травления позволяют изучать нефиксированные клетки без образования в них арте­фактов, вызываемых фиксацией.

    Методы контрастирования солями тяжелых металлов позволяют ис­следовать в электронном микроскопе отдельные макромолекулы - ДНК, крупных белков (например, миозин). При негативном контрастировании изучают агрегаты макромолекул (рибосомы, вирусы) либо белковые филаменты (актиновые нити).

    Электронная микроскопия ультратонких срезов, полученных методом криоультра-микротомии. При этом методе кусочки тканей без фиксации и заливки в твердые среды быстро охлаждают в жидком азоте при температуре -196 °С. Это обеспечива­ет торможение метаболических процессов клеток и переход воды из жидкой фазы в твердую. Далее блоки режут на ультрамикротоме при низкой температуре. Такой метод приготовления срезов обычно используют для определения активности фер­ментов, а также для проведения иммунохимических реакций. Для выявления анти­генов применяют антитела, связанные с частицами коллоидного золота, локализа­цию которого легко выявить на препаратах.

    Методы сверхвысоковольтной микроскопии. Используют электронные микроско­пы с ускоряющим напряжением до 3 000 000 В. Преимущество этих микроскопов в том, что они позволяют исследовать объекты большой толщины (1-10 мкм), так как при высокой энергии электронов они меньше поглощаются объектом. Стерео­скопическая съемка позволяет получать информацию о трехмерной организации внутриклеточных структур с высоким разрешением (около 0,5 нм).

    Рентгеноструктурный анализ. Для изучения структуры макромолекул на ато­марном уровне применяют методы с использованием рентгеновских лучей, имеющих длину волны около 0,1 нм (диаметр атома водорода). Молекулы, образующие крис­таллическую решетку, изучают с помощью дифракционных картин, которые регист­рируют на фотопластинке в виде множества пятен различной интенсивности. Интен­сивность пятен зависит от способности различных объектов в решетке рассеивать излучение. Положение пятен в дифракционной картине зависит от положения объек­та в системе, а их интенсивность свидетельствует о его внутренней атомной структуре.

    Методы исследования фиксированных клеток и тканей

    Исследование фиксированных клеток и тканей. Основным объектом ис­следования являются гистологические препараты, приготовленные из фик­сированных структур. Препарат может представлять собой мазок (напри­мер, мазок крови, костного мозга, слюны, цереброспинальной жидкости и др.), отпечаток (например, селезенки, тимуса, печени), пленку из ткани (например, соединительной или брюшины, плевры, мягкой мозго­вой оболочки), тонкий срез. Наиболее часто для изучения используется срез ткани или органа. Гистологические препараты могут изучаться без спе­циальной обработки. Например, приготовленный мазок крови, отпечаток, пленка или срез органа могут сразу рассматриваться под микроскопом. Но вследствие того, что структуры имеют"слабый контраст, они плохо выявля­ются в обычном световом микроскопе и требуется использование специаль­ных микроскопов (фазово-контрастные и др.). Поэтому чаще применяют специально обработанные препараты.

    Процесс изготовления гистологического препарата для световой и элек­тронной микроскопии включает следующие основные этапы: 1) взятие материала и его фиксация, 2) уплотнение материала, 3) приготовление срезов, 4) окрашивание или контрастирование срезов. Для световой мик­роскопии необходим еще один этап - заключение срезов в бальзам или другие прозрачные среды (5). Фиксация обеспечивает предотвращение про­цессов разложения, что способствует сохранению целостности структур. Это достигается тем, что взятый из органа маленький образец либо погружают в фиксатор (спирт, формалин, растворы солей тяжелых металлов, осмие­вая кислота, специальные фиксирующие смеси), либо подвергают терми­ческой обработке. Под действием фиксатора в тканях и органах происходят сложные физико-химические изменения. Наиболее существенным из них является процесс необратимой коагуляции белков, вследствие которого жизнедеятельность прекращается, а структуры становятся мертвыми, фик­сированными. Фиксация приводит к уплотнению и уменьшению объема кусочков, а также к улучшению последующей окраски клеток и тканей.

    Уплотнение кусочков, необходимое для приготовления срезов, произво­дится путем пропитывания предварительно обезвоженного материала пара­фином, целлоидином, органическими смолами. Более быстрое уплотнение достигается применением метода замораживания кусочков, например в жидкой углекислоте.

    Приготовление срезов производится на специальных приборах - микро­томах (для световой микроскопии) и ультрамикротомах (для электронной микроскопии).

    Окрашивание срезов (в световой микроскопии) или напыление их соля­ми металлов (в электронной микроскопии) применяют для увеличения кон­трастности изображения отдельных структур при рассматривании их в мик­роскопе. Методы окраски гистологических структур очень разнообразны и выбираются в зависимости от задач исследования. Гистологические краси­тели подразделяют на кислые, основные и нейтральные. В качестве примера можно привести наиболее известный основной краситель азур II , который окрашивает ядра в фиолетовый цвет, и кислый краситель - эозин, окрашивающий цитоплазму в розово-оранжевый цвет. Избиратель­ное сродство структур к определенным красителям обусловлено их хими­ческим составом и физическими свойствами. Структуры, хорошо окраши­вающиеся кислыми красителями, называются оксифильными (ацидофильны­ми, эозинофильными), а окрашивающиеся основными - базофильными. Структуры, воспринимающие как кислые, так и основные красители, яв­ляются нейтрофилъными (гетерофильными). Окрашенные препараты обычно обезвоживают в спиртах возрастающей крепости и просветляют в ксилоле, бензоле, толуоле или некоторых маслах. Для длительного сохранения обез­воженный гистологический срез заключают между предметным и по­кровным стеклами в канадский бальзам или другие вещества. Готовый гис­тологический препарат может быть использован для изучения под микро­скопом в течение многих лет. Для электронной микроскопии срезы, полу­ченные на ультрамикротоме, помещают на специальные сетки, контрас­тируют солями марганца, кобальта и др., после чего просматривают в микроскопе и фотографируют. Полученные микрофотографии служат объек­том изучения наряду с гистологическими препаратами.

    Методы исследования живых клеток и тканей

    Изучение живых клеток и тканей позволяет получить наиболее полную информацию об их жизнедеятельности - проследить движение, процессы деления, разрушения, роста, дифференцировки и взаимодействия клеток, продолжительность их жизненного цикла, реактивные изменения в ответ на действие различных факторов.

    Прижизненные исследования клеток в организме (in vivo ). Одним из при­жизненных методов исследования является наблюдение структур в живом организме. С помощью специальных просвечивающих микроскопов-иллюми­наторов, например, можно изучать в динамике циркуляцию крови в мик­рососудах. После проведения анестезии у животного объект исследования (например, брыжейка кишечника) выводят наружу и рассматривают в мик­роскопе, при этом ткани должны постоянно увлажняться изотоническим раствором натрия хлорида. Однако длительность такого наблюдения огра­ничена. Лучшие результаты дает метод вживления прозрачных ка­мер в организм животного.

    Наиболее удобным органом для вживления таких камер и последующего на­блюдения является ухо какого-либо животного (например, кролика). Участок уха с прозрачной камерой помещают на предметный столик микроскопа и в этих услови­ях изучают динамику изменения клеток и тканей в течение продолжительного вре­мени. Таким образом могут изучаться процессы выселения лейкоцитов из кровенос­ных сосудов, различные стадии образования соединительной ткани, капилляров, нервов и другие процессы. В качестве естественной прозрачной камеры можно ис­пользовать глаз экспериментальных животных. Клетки, ткани или образцы органов помещают в жидкость передней камеры глаза в угол, образованный роговицей и радужкой, и могут наблюдаться через прозрачную роговицу. Таким образом была произведена трансплантация оплодотворенной яйцеклетки и прослежены ранние стадии развития зародыша. Обезьянам были пересажены небольшие кусочки матки и изучены изменения слизистой оболочки матки в различные фазы менструального цикла.

    Широкое применение нашел метод трансплантации клеток кро­ви и костного мозга от здоровых животных-доноров животным-реципиен­там, подвергнутым смертельному облучению. Животные-реципиенты после трансплантации оставались живыми вследствие приживления донорских клеток, образующих в селезенке колонии кроветворных клеток. Исследова­ние числа колоний и их клеточного состава позволяет выявлять количество родоначальных кроветворных клеток и различные стадии их дифференци­ровки. С помощью метода колониеобразования установлены источники раз­вития для всех клеток крови.

    Витальное и суправитальное окрашивание. При витальном (прижиз­ненном) окрашивании клеток и тканей краситель вводят в организм жи­вотного, при этом он избирательно окрашивает определенные клетки, их органеллы или межклеточное вещество. Например, с помощью трипанового синего или литиевого кармина выявляют фагоциты, а с помощью ализа­рина - новообразованный матрикс кости.

    Суправитальным окрашиванием называют окрашивание живых клеток, выделенных из организма. Таким способом выявляют молодые фор­мы эритроцитов - ретикулоциты крови (краситель бриллиантовый крези-ловый голубой), митохондрии в клетках (краситель зеленый янус), лизосомы (краситель нейтральный красный).

    Исследования живых клеток и тканей в культуре (in vitro ). Этот метод является одним из самых распространенных. Выделенные из организма че­ловека или животных клетки, маленькие образцы тканей или органов по­мещают в стеклянные или пластмассовые сосуды, содержащие специальную питательную среду, - плазму крови, эмбриональный экстракт, а так­же искусственные среды. Различают суспензионные культуры (клет­ки взвешены в среде), тканевые, органные и монослойные культуры (эксплантированные клетки образуют на стекле сплошной слой). Обеспечи­ваются стерильность среды и температура, соответствующая температуре тела. В этих условиях клетки в течение длительного времени сохраняют ос­новные показатели жизнедеятельности - способность к росту, размноже­нию, дифференцировке, движению. Такие культуры могут существовать многие дни, месяцы и даже годы, если обновлять среду культивирования и пересаживать жизнеспособные клетки в другие сосуды. Некоторые виды клеток благодаря изменениям в их геноме могут сохраняться и размножать­ся в культуре, образуя непрерывные клеточные линии. В разработку методов культивирования клеток и тканей большой вклад внесли А. А. Максимов, А. В. Румянцев, Н. Г. Хлопин, А. Д. Тимофеевский, Ф. М. Лазаренко. В на­стоящее время получены клеточные линии фибробластов, миоцитов, эпи-телиоцитов, макрофагов и др., которые существуют многие годы.

    Использование метода культивирования позволило выявить ряд зако­номерностей дифференцировки, злокачественного перерождения клеток, клеточных взаимодействий, взаимодействий клеток с вирусами и микроба­ми. Показана возможность хрящевых клеток формировать в культуре меж­клеточное вещество и способность клеток надпочечников продуцировать гормоны. Культивирование эмбриональных тканей и органов дало возмож­ность проследить развитие кости, кожи и других органов. Разработана мето­дика культивирования нервных клеток.

    Особую значимость метод культуры тканей имеет для проведения эк­спериментальных наблюдений на клетках и тканях человека. Взятые из организма человека клетки при пункции или биопсии могут в культуре тканей использоваться для определения пола, наследственных заболева­ний, злокачественного перерождения, выявления действия ряда токсич­ных веществ.

    В последние годы клеточные культуры широко применяются для гиб­ридизации клеток.

    Разработаны методы разделения тканей на клетки, выделение отдельных типов клеток и их культивирования.

    Вначале ткань превращают в суспензию клеток путем разрушения межклеточных контактов и межклеточного матрикса с помощью протеолитических ферментов (трип­син, коллагеназа) и соединений, связывающих Са 2+ (с помощью ЭДТА - этиленди-аминтетрауксусной кислоты). Далее полученную суспензию разделяют на фракции клеток различных типов с помощью центрифугирования, позволяющего отделить более тяжелые клетки от легких, большие от малых, или путем прилипания клеток к стеклу или пластмассе, способность к которому у различных типов клеток неодина­кова. Для обеспечения специфического прилипания клеток к поверхности стекла ис­пользуют антитела, специфически связывающиеся с клетками одного типа. Прилип­шие клетки затем отделяют, разрушая матрикс ферментами, при этом получают взвесь однородных клеток. Более тонким методом разделения клеток является мече-ние антителами, связанными с флюоресцирующими красителями. Меченые клетки отделяются от немеченых с помощью сортера (электронного флюоресцентно-активи­руемого клеточного анализатора). Клеточный анализатор сортирует в 1 с около 5000 клеток. Выделенные клетки можно изучать в условиях культивирования.

    Метод культивирования клеток позволяет изучать их жизнедеятельность, раз­множение, дифференцировку, взаимодействие с другими клетками, влияние гор­монов, факторов роста и др.

    Культуры обычно готовят из суспензии клеток, полученной вышеописанным методом диссоциации ткани. Большинство клеток неспособны расти в суспензии, им необходима твердая поверхность, в качестве которой используют поверхность пластиковой культуральной чашки, иногда с компонентами внеклеточного матрик-са, например коллагена. Первичными культурами называют культуры, приготовлен­ные непосредственно после первого этапа фракционирования клеток, вторичны­ми - культуры клеток, пересаженные из первичных культур в новую среду. Можно последовательно перевивать клетки в течение недель и месяцев, при этом клетки сохраняют характерные для них признаки дифференцировки (например, клетки эпителия образуют слои). Исходным материалом для клеточных культур обычно слу­жат эмбриональные ткани и ткани новорожденных.

    В качестве питательных сред используют смеси солей, аминокислот, витами­нов, лошадиной сыворотки, экстракт куриных эмбрионов, эмбриональную сыво­ротку и др. В настоящее время разработаны специальные среды для культивирова­ния различных типов клеток. Они содержат один или несколько белковых факторов роста, необходимых клеткам для жизнедеятельности и размножения. Например, для роста нервных клеток необходим фактор роста нервов (ФРН).

    У большинства клеток в культуре наблюдается определенное число делений (50-100), а затем они погибают. Иногда в культуре появляются мутантные клетки, которые размножаются бесконечно и образуют клеточную линию (фибробласты, эпителиоциты, миобласты и др.). Мутантные клетки отличаются от раковых клеток, также способных к непрерывному делению, но могущих расти без прикрепления к твердой поверхности. Раковые клетки в культуральных чашках образуют более плот­ную популяцию, чем популяции обычных клеток. Аналогичное свойство можно вызвать экспериментально у нормальных клеток путем трансформации их опухоле-родными вирусами или химическими соединениями, при этом образуются неопла-стически трансформированные клеточные линии. Клеточные линии нетрансформи-рованных и трансформированных клеток можно длительно сохранять при низких температурах (-70 °С). Генетическую однородность клеток усиливают клонировани­ем, когда из одной клетки при ее последовательном делении получают большую колонию однородных клеток. Клон - это популяция клеток, происходящих из од­ной клетки-предшественника.

    Клеточные гибриды. При слиянии двух клеток различных типов образу­ется гетерокарион - клетка с двумя ядрами. Для получения гетерока-риона суспензию клеток обрабатывают полиэтиленгликолем или инактиви-рованными вирусами для повреждения плазмолемм клеток, после чего клет­ки способны к слиянию. Например, неактивное ядро эритроцита курицы становится активным (синтез РНК, репликация ДНК) при слиянии кле­ток и переносе в цитоплазму другой клетки, растущей в культуре ткани. Ге­терокарион способен к митозу, в результате чего образуется гибридная клет­ка. Оболочки ядер у гетерокариона разрушаются, и их хромосомы объеди­няются в одном большом ядре.

    Клонирование гибридных клеток приводит к образованию гибридных клеточных линий, которые используются для изучения генома. Например, в гибридной клеточной линии «мышь - человек» установлена роль хромо­сомы 11 человека в синтезе инсулина.

    Гибридомы. Клеточные линии гибридом используют для получения мо-ноклональных антител. Антитела вырабатываются плазмоцитами, которые образуются из В-лимфоцитов при иммунизации. Определенный вид анти­тел получают при иммунизации мышей конкретными антигенами. Если клонировать такие иммунизированные лимфоциты, то можно получить большое количество однородных антител. Однако время жизни В-лимфоци­тов в культуре ограничено. Поэтому производят их слияние с «бессмертны­ми» опухолевыми клетками (В-лимфомы). В результате образуются гибридо мы (гибрид-клетка, с геномом от двух разных клеток; ома - окончание в названиях опухолей). Такие гибридомы способны размножаться длительно в культуре и синтезировать антитела определенного вида. Каждый клон гиб­ридомы является источником моноклональных антител. Все молекулы анти­тел данного вида обладают одинаковой специфичностью связывания анти­генов. Можно получать моноклональные антитела против любого белка, содержащегося в клетке, и использовать их для установления локализации белков в клетке, а также для выделения белка из смеси (очистка белков), что позволяет исследовать структуру и функцию белков. Моноклональные антитела применяют также в технологии клонирования генов.

    Антитела можно использовать для изучения функции различных моле­кул, вводя их через плазмолемму непосредственно в цитоплазму клеток тонкой стеклянной пипеткой. Например, введение антител к миозину в цитоплазму оплодотворенной яйцеклетки морского ежа останавливает раз­деление цитоплазмы.

    Технология рекомбинантных ДНК. Классические генетические методы позволяют изучать функцию генов, анализируя фенотипы мутантных орга­низмов и их потомства. Технология рекомбинантных ДНК дополняет эти методы, позволяет проводить детальный химический анализ генетического материала и получать в больших количествах клеточные белки.

    Методы гибридизации широко используют в современной биологии для изучения структуры генов и их экспрессии.

    Методы исследования химического состава и метаболизма клеток и тканей

    Для изучения химического состава биологических структур - локали­зации веществ, их концентрации и динамики в процессах метаболизма при­меняют специальные методы исследования.

    Цито- и гистохимические методы. Эти методы позволяют выявлять лока­лизацию различных химических веществ в структурах клеток, тканей и ор­ганов - ДНК, РНК, белков, углеводов, липидов, аминокислот, минераль­ных веществ, витаминов, активность ферментов. Эти методы основаны на специфичности реакции между химическим реактивом и субстратом, вхо­дящим в состав клеточных и тканевых структур, и окрашивании продуктов химических реакций. Для повышения специфичности реакции часто при­меняют ферментативный контроль. Например, для выявления в клетках ри­бонуклеиновой кислоты (РНК) часто используют галлоцианин - краситель с основными свойствами, а наличие РНК подтверждают контрольной обра­боткой рибонуклеазой, расщепляющей РНК. Галлоцианин окрашивает РНК в сине-фиолетовый цвет. Если срез предварительно обработать рибонуклеа­зой, а затем окрасить галлоцианином, то отсутствие окрашивания подтверж­дает наличие в структуре рибонуклеиновой кислоты. Описание многочислен­ных цито- и гистохимических методов дается в специальных руководствах.

    В последние годы сочетание гистохимических методов с методом элек­тронной микроскопии привело к развитию нового перспективного направ­ления - электронной гистохимии. Этот метод позволяет изучать ло­кализацию различных химических веществ не только на клеточном, но и на субклеточном и молекулярном уровнях.

    Для изучения макромолекул клеток используют очень чувствительные методы с применением радиоактивных изотопов и антител, позволяющие обнаружить даже небольшое содержание молекул (менее 1000).

    Радиоактивные изотопы при распаде ядра испускают заряженные части­цы (электроны) или излучение (например, гамма-лучи), которые можно зарегистрировать в специальных приборах. Радиоактивные изотопы исполь­зуют в методе радиоавтографии. Например, с помощью радиоизотопов 3 Н-тимидина исследуют ДНК ядра, с помощью 3 Н-уридина - РНК.

    Метод радиоавтографии. Этот метод дает возможность наиболее полно изучить обмен веществ в разных структурах. В основе метода лежит исполь­зование радиоактивных элементов (например, фосфора - 32 Р, углерода - 14 С, серы - 35 S , водорода - 3 Н) или меченных ими соединений. Радиоак­тивные вещества в гистологических срезах обнаруживают с помощью фото­эмульсии, которую наносят на препарат и затем проявляют. В участках пре­парата, где фотоэмульсия соприкасается с радиоактивным веществом, про­исходит фотореакция, в результате которой образуются засвеченные участ­ки (треки). Этим методом можно определять, например, скорость включе­ния меченых аминокислот в белки, образование нуклеиновых кислот, об­мен йода в клетках щитовидной железы и др.

    Методы иммунофлюоресцентного анализа. Применение антител. Антите­ла - защитные белки, вырабатываемые плазмоцитами (производными В-лимфоцитов) в ответ на действие чужеродных веществ (антигенов). Ко­личество различных форм антител достигает миллиона. Каждое антитело имеет участки для «узнавания» молекул, вызвавших синтез этого антитела. В связи с высокой специфичностью антител в отношении антигенов они могут быть использованы для выявления любых белков клетки. Для выявле­ния локализации белков антитела окрашивают флюоресцирующими краси­телями, а затем клетки изучают с помощью флюоресцентной микроскопии. Антитела можно использовать также для изучения антигенов на ультра­структурном уровне с помощью электронного микроскопа. Для этого анти­тела метят электронно-плотными частицами (микросферы коллоидного зо­лота). Для усиления специфичности реакции применяют моноклональные антитела, образуемые линией клеток, - клонами, полученной методом гибридом из одной клетки. Метод гибридом позволяет получать монокло­нальные антитела с одинаковой специфичностью и в неограниченных ко­личествах.

    Методы иммунофлюоресцентного анализа широко и эффективно ис­пользуются в современной гистологии. Эти методы применяются для изуче­ния процессов дифференцировки клеток, выявления в них специфических химических соединений и структур. Они основаны на реакциях антиген - антитело. Каждая клетка организма имеет специфический антигенный со­став, который главным образом определяется белками. Продукты реакции можно окрашивать и выявлять в люминесцентном микроскопе, например выявление актина и тубулина в клетке с помощью метода иммунофлюорес­центного анализа (см. главу IV ).

    Современные методы исследований позволяют проводить анализ хими­ческого состава различных структурных компонентов клеток, как фиксиро­ванных, так и живых. Изучение отдельных внутриклеточных структур стало возможным после разработки технологий фракционирования клеточного содержимого.

    Фракционирование клеточного содержимого

    Фракционировать структуры и макромолекулы клеток можно различны­ми методами - ультрацентрифугированием, хроматографией, электрофо­резом. Подробнее эти методы описаны в учебниках биохимии.

    Ультрацентрифугирование. С помощью этого метода клетки можно разделить на органеллы и макромолекулы. Вначале разрушают клет­ки осмотическим шоком, ультразвуком или механическим воздействием. При этом мембраны (плазмолемма, эндоплазматический ретикулум) распадаются на фрагменты, из которых формируются мельчайшие пу­зырьки, а ядра и органеллы (митохондрии, аппарат Гольджи, лизосомы и пероксисомы) сохраняются интактными и находятся в образующей сус­пензии.

    Для разделения вышеуказанных компонентов клетки применяют высо­коскоростную центрифугу (80 000-150 000 оборотов/мин). Вначале оседают (седиментируют) на дне пробирки более крупные части (ядра, цитоскелет). При дальнейшем увеличении скоростей центрифугирования надосадочных фракций последовательно оседают более мелкие частицы - сначала мито­хондрии, лизосомы и пероксисомы, затем микросомы и мельчайшие пу­зырьки и, наконец, рибосомы и крупные макромолекулы. При центрифу­гировании различные фракции оседают с различной скоростью, образуя в пробирке отдельные полосы, которые можно выделить и исследовать. Фрак­ционированные клеточные экстракты (бесклеточные системы) широко ис­пользуют для изучения внутриклеточных процессов, например для изуче­ния биосинтеза белка, расшифровки генетического кода и др.

    Хроматография широко используется для фракционирования бел­ков.

    Электрофорез позволяет разделить белковые молекулы с различным зарядом при помещении их водных растворов (или в твердом пористом матриксе) в электрическом поле.

    Методы хроматографии и электрофореза применяют для анализа пеп­тидов, получаемых при расщеплении белковой молекулы, и получения так называемых пептидных карт белков. Подробно эти методы описаны в учеб­никах биохимии.

    Изучение химического состава живых клеток. Для изучения распределе­ния веществ и их метаболизма в живых клетках используют методы ядерно­го магнитного резонанса и микроэлектродную технику.

    Ядерный магнитный резонанс (ЯМР) позволяет изучать малые моле­кулы низкомолекулярных веществ. Образец ткани содержит атомы в различных мо­лекулах и в различном окружении, поэтому он будет поглощать энергию на различ­ных резонансных частотах. Диаграмма поглощения на резонансных частотах для дан­ного образца составит его спектр ЯМР. В биологии сигнал ЯМР от протонов (ядер водорода) широко используется для изучения белков, нуклеиновых кислот и др. Для изучения макромолекул внутри живой клетки часто применяют изотопы 3 Н, 13 С, 35 К, 31 Р для получения сигнала ЯМР и слежения за его изменением в процессе жиз­недеятельности клетки. Так, 3| Р используется для изучения мышечного сокращения - изменений содержания в тканях АТФ и неорганического фосфата. Изотоп 13 С по­зволяет с помощью ЯМР исследовать многие процессы, в которых участвует глю­коза. Использование ЯМР ограничено его низкой чувствительностью: в 1 г живой ткани должно содержаться не менее 0,2мм исследуемого вещества. Преимуществом метода является его безвредность для живых клеток.

    Микроэлектродная техника. Микроэлектроды представляют собой стеклянные трубочки, заполненные электропроводным раствором (обычно раствор КС1 в воде), диаметр конца которых измеряется долями микрона. Кончик такой тру­бочки можно вводить в цитоплазму клетки через плазмолемму и определять кон­центрацию ионов Н + , Na + , К + , С1", Са 2+ , Mg 2+ , разность потенциалов на плазмо-лемме, а также производить инъекцию молекул в клетку. Для определения концен­трации конкретного иона используют ионселективные электроды, которые запол­няют ионообменной смолой, проницаемой только для данного иона. В последние годы микроэлектродную технику применяют для изучения транспорта ионов через специальные ионные каналы (специализированные белковые каналы) в плазмолем-ме. При этом используют микроэлектрод с более толстым кончиком, который плот­но прижимают к соответствующему участку плазмолеммы. Этот метод позволяет ис­следовать функцию одиночной белковой молекулы. Изменение концентрации ионов внутри клетки можно определить с помощью люминесцирующих индикаторов. На­пример, для изучения внутриклеточной концентрации Са 2+ используют люминес­центный белок акварин (выделен из медузы), который излучает свет в присутствии ионов Са 2+ и реагирует на изменение концентрации последнего в пределах 0,5- 10 мкМ. Синтезированы также флюоресцентные индикаторы, прочно связывающи­еся с Са 2+ . Создание различных новых типов внутриклеточных индикаторов и совре­менных способов анализа изображений позволяет точно и быстро определять внут­риклеточную концентрацию многих низкомолекулярных веществ.

    Количественные методы

    В настоящее время наряду с качественными методами разработаны и применяются количественные гистохимические методы опре­деления содержания различных веществ в клетках и тканях. Особенность количественно-гистохимических (в отличие от биохимических) методов исследования заключается в возможности изучения концентрации и содер­жания химических компонентов в конкретных структурах клеток и тканей.

    Цитоспектрофотометрия - метод количественного изучения внутрикле­точных веществ по их абсорбционным спектрам.

    Цитоспектрофлюориметрия - метод количественного изучения внутри­клеточных веществ по спектрам их флюоресценции или по интенсивности флюоресценции на одной заранее выбранной волне (цитофлюориметрия).

    Современные микроскопы - цитофлюориметры позволяют обнаружить в различных структурах малые количества вещества (до 10~ 14 -10~ 16 г) и оце­нить локализацию исследуемых веществ в микроструктурах.

    Методы анализа изображения клеточных и тканевых структур


    Полученные изображения микрообъектов в микроскопе, на телевизи­онном экране дисплея, на электронных микрофотографиях могут подвер­гаться специальному анализу - выявлению морфометрических, денситомет-рических параметров и их статистической обработке.

    Морфометрические методы позволяют определять с помощью специаль­ных сеток (Е. Вейбеля, А. А. Глаголева, С. Б. Стефанова) число любых структур, их площади, диаметры и др. В частности, в клетках могут быть измерены площади ядер, цитоплазмы, их диаметры, ядерно-цитоплазмати-ческие отношения и др. Существуют ручная морфометрия и авто­матизированная морфометрия, при которой все параметры изме­ряются и регистрируются в приборе автоматически.

    В последние годы все большее распространение получают автоматизи­ рованные системы обработки изображений (АСОИз), позволяющие наиболее эффективно реализовать перечисленные выше количественные методы для изучения клеток и тканей. При этом аналитические возможности количе­ственной микроскопии дополняются методами анализа и распознавания образцов, основанными на обработке с помощью электронных вычисли­тельных машин (ЭВМ) информации, извлекаемой из изображений клеток и тканей. По существу можно говорить об устройствах, не только усилива­ющих оптические возможности зрительного анализатора человека, но и многократно расширяющих его аналитические возможности. Высказывается мнение, что АСОИз совершает такой же переворот в морфологии, какой около 300 лет назад произошел благодаря изобретению светового, а около 50 лет назад - электронного микроскопа, поскольку они не только неиз­меримо повышают производительность труда исследователя и не только объективизируют наблюдения, но и позволяют получать новую информа­цию о невыявляемых ранее процессах, численно моделировать и прогнози­ровать их развитие в клетках и тканях.

    Вместе с тем участие в эксперименте ЭВМ требует от исследователя нового подхода к его проведению, владения навыками составления алго­ритмов процесса исследования, точности рассуждений и в конечном итоге повышения научно-методического уровня исследования.

    Одним из методов, существенно расширивших число решаемых морфо­логических задач, является оптико-структурный машинный анализ (ОСМА), предложенный в 1965 г. К.М.Богдановым. В 1978 г. автор метода был удосто­ен Государственной премии СССР. С появлением ОСМА сделан качествен­но новый шаг в разработке единой методологии количественного анализа микроструктур на основе статистических характеристик. В последнее время ОСМА нашел эффективное применение в исследовательской практике и народном хозяйстве.

    На рис. 2 представлена созданная в нашей стране фирмой «ЛОМО» ав­томатизированная система обработки изображений «Протва-МП». Система предназначена для проведения комплексных исследований клеток и тканей с использованием методов абсорбционной, флюоресцентной микроскопии и радиоавтографии.

    Входящий в состав системы специальный сканирующий оптический или электронный микроскоп осуществляет последовательный просмотр изображения препарата по двум координатам, преобразуя его в цифровую форму, и вводит в ЭВМ, которая в свою очередь производит цифровую обработку изображения и выдает информацию о геометрических и других характеристиках анализируемого объекта.

    С помощью цветного дисплея исследователь может «препарировать» изображе­ние, выделяя лишь те структурные составляющие, которые его интересуют. Входя­щие в состав ЭВМ емкие накопители информации на магнитных дисках или лентахпозволяют запоминать как сами изображения, так и результаты их обработки для последующего хранения и документирования

    Использование методов автоматизированного анализа микрообъектов рассмотрим на примере обработки изображения лейкоцита крови (рис 3) Сканирующий микроскоп-фотометр позволяет построчно «просматривать» значения оптической плотности с шагом, заданным исследователем В ре­зультате оптический сигнал, соответствующий оптической плотности объекта, преобразуется в цифровую форму Полученная цифровая матри­ца подлежит препаровке с помощью специального математического аппа­рата

    Вначале убирается фон и вычленяется «чистый» объект - изображение клетки (1а), затем из изображения клетки выделяется любая интересующая исследователя деталь, например цитоплазма (16) и ядро (I порядка среднее и ин­тегральное значение оптической плотности, дисперсия, асимметрия, эксцесс и др По изображению объекта получают морфометрические параметры пло­щадь, периметр, диаметр, ядерно-цитоплазматическое отношение, коэффициент формы и др

    Следующим этапом обработки изображения является построение двухмер­ных диаграмм взаимозависимости оптической плотности для всей клетки (см рис 3), ее цитоплазмы (Шб) и ядра (Шв) Так же, как и в первом случае, на диа­грамме всей клетки (Ша) можно выделить фазу цитоплазмы и ядра Данные диа­граммы позволяют рассчитать гистограммные параметры II порядка гомоген­ность, локальный контраст, энтропию и др.


    Рис. З. Автоматизированная обработка изображения клетки (схема).

    Изображение лейкоцита (а), его цитоплазмы (б) и ядра (в). I - цифровое изображение; II - гистограммы оптической плотности; III - двухмерные гистограммы зависимости значений оптической плотности.

    Полученные таким образом параметры представляют многомерный «портрет» клетки и имеют конкретное числовое выражение. Они могут быть подвергнуты различным методам статистической обработки, позволяют предельно точно классифицировать микрообъекты, выявлять особенности их структуры, необнаруживаемые визуально.

    Таким образом, применение новых методов исследований в гистологии, цитологии и эмбриологии позволяет выяснить общие закономерности орга­низации тканей и клеток, структурные основы биохимических процессов, определяющих функцию конкретных структурных компонентов клетки.

    Основными методами цитологических исследований являются световая и электронная микроскопия , т. е. использование световых и электронных микроскопов, позволяющих увидеть внешнее и внутреннее строения клеток.

    Световые микроскопы позволяют в том числе наблюдать и за живыми клетками (обычно для этого используются одноклеточные организмы, клетки крови). Однако разрешающая способность световых микроскопов не так велика как у электронных. Разрешающая способность увеличительного прибора - это минимальное расстояние между двумя видимыми отдельно точками. У световых микроскопов это расстояние измеряется сотнями нанометров, а у электронных - десятками и единицами нанометров. Если в первых используется световой поток (разрешающая способность обратнопропорционально зависит от длины волны), то во вторых - поток электронов.

    Существует два вида электронных микроскопов - просвечивающие и сканирующие. Разрешающая способность первых несколько выше, однако с помощью вторых можно получить объемное изображение. Для просвечивающих микроскопов готовят очень тонкие срезы, через которые проходит пучок электронов. В сканирующих микроскопах пучок электронов отражается от объекта.

    В цитологических исследованиях также используется метод флуоресцентной микроскопии , который заключается в том, что к живым клеткам добавляются определенные красящие вещества, которые, соединяясь с различными компонентами клетки, начинают светиться. Таким образом, можно в световой микроскоп наблюдать клеточные структуры (хлоропласты, микротрубочки и др.).

    Кроме микроскопии в современной цитологии используются и другие методы исследования. Цитохимический метод позволяет изучать химический состав клеток. Данный метод базируется на химических реакциях определенных веществ. Добавляя реагенты к клеткам, можно выявить наличие в них ДНК, определенных белков и др., а также определить их количество.

    Метод радиоавтографии предполагает введение вещества, содержащего меченые (радиоактивные) атомы. Меченые молекулы через некоторое время включаются в биополимеры клетки, и по ним можно отследить протекание метаболических процессов в клетке.

    С 20-х годов XX века хорошо известен такой метод цитологических исследований как центрифугирование (или метод фракционирования клеточных структур) . Он основан на том, что клеточные структуры имеют разную массу и при центрифугировании осаждаются с разной скоростью. Таким образом, если разрушить клетки, то после центрифуги смесь разделится на фракции, где внизу будут находиться более тяжелые структуры (обычно это клеточные ядра), а вверху - более легкие.

    Относительно новым является метод клеточных культур , позволяющий вне организма в специально созданных условиях выращивать одинаковые клетки (колонии) из одной или нескольких исходных. Данный метод позволяет отдельно от организма изучать свойства его клеток, проводить цитологические, генетические и другие исследования.

    Новым методом цитологических исследования является метод микрохирургии . С помощью микроманипулятора, соединенного с микроскопом, из клеток извлекают или вносят различные компоненты, вводят вещества.

    Мурманскийгосударственный технический университет

    Кафедра биологии

    Доклад на тему:

    «Методыисследования в цитологии»

    Выполнил:

    Студентка 1-го курса

    Технического факультета

    Кафедры Биология

    Серебрякова ЛадаВячеславовна

    Проверил:


    Мурманск2001


    План:

    1.Что изучает цитология.

    2.Представление о том, что организмы состоят из клеток.

    3.Методы исследования, применяемые в цитологии.

    4.Фракционирование клеток.

    5.Радиоавтография.

    6.Определение продолжительности некоторых стадий клеточного цикла методомрадиоавтографии.

    Цитология –наука о клетке. Из среды других биологических наук она выделилась почти 100 летназад. Впервые обобщенные сведения о строении клеток были собраны в книгуЖ.-Б. Карнуа «Биология клетки», вышедшей в 1884 году. Современная цитологияизучает строение клеток, их функционирование как элементарных живых систем:исследуются функции отдельных клеточных компонентов, процессы воспроизведенияклеток, их репарации, приспособление к условиям среды и многие другие процессы,позволяющие судить об общих для всех клеток свойствах и функциях. Цитологиярассматривает также особенности строения специализированных клеток. Другимисловами, современная цитология – это физиология клетки. Цитология тесносопряжена с научными и методическими достижениями биохимии, биофизики,молекулярной биологии и генетики. Это послужило основанием для углубленногоизучения клетки уже с позиций этих наук и появления некой синтетической науки оклетке – биологии клетки, или клеточной биологии. В настоящее время терминыцитология и биология клетки совпадают, так как их предметом изучения является клеткас ее собственными закономерностями организации и функционирования. Дисциплина«Биология клетки» относится к фундаментальным разделам биологии, потому что онаисследует и описывает единственную единицу всего живого на Земле – клетку.

    Длительное и пристальноеизучение клетки как таковой привело к формулированию важного теоретическогообобщения, имеющего общебиологическое значение, а именно к появлению клеточнойтеории. В XVII в. Роберт Гук,физик и биолог, отличавшийся большой изобретательностью, создал микроскоп.Рассматривая под своим микроскопом тонкий срез пробки, Гук обнаружил, что онапостроена из малюсеньких ничем не заполненных ячеек, разделенных тонкимистенками, которые, как это нам теперь известно, состоят из целлюлозы. Он назвалэти маленькие ячейки клетками. В дальнейшем, когда другие биологи началиисследовать под микроскопом растительные ткани, оказалось, что маленькиеячейки, обнаруженные Гуком в мертвой иссохшей пробке, имеются и в живыхрастительных тканях, но у них они не пустые, а содержат каждая по маленькомустуденистому тельцу. После того, как микроскопическому исследованию подверглиживотные ткани, было установлено, что они также состоят из мелких студенистыхтелец, но что эти тельца лишь в редких случаях отделены друг от друга стенками.В результате всех этих исследований в 1939 г. Шлейден и Шванн независимо другот друга сформулировали клеточную теорию, гласящую, что клетки представляютсобой элементарные единицы, из которых в конечном счете построены все растенияи все животные. В течение какого-то времени двоякий смысл слова клетка ещевызывал некоторые недоразумения, но затем он прочно закрепился за этимималенькими желеобразными тельцами.

    Современное представление оклетке тесно связано с техническими достижениями и усовершенствованиями методовисследования. Помимо обычной световой микроскопии, не утратившей своей роли, впоследние несколько десятилетий большое значение приобрели поляризационная,ультрафиолетовая, флюоресцентная, фазовоконтрастная микроскопия. Среди них особоеместо занимает электронная микроскопия, разрешающая способность которойпозволила проникнуть и изучить субмикроскопическую и молекулярную структуруклетки. Современные методы исследования позволили вскрыть детальную картинуклеточной организации.

    Каждая клеткасостоит из ядра и цитоплазмы, отделенных друг от друга и от внешней средыоболочками. Компонентами цитоплазмы являются: оболочка, гиалоплазма,эндоплазматическая сеть и рибосомы, аппарат Гольджи, лизосомы, митохондрии,включения, клеточный центр, специализированные органеллы.

    Часть организма, выполняющаякакую-то особую функцию, называют органом. Любой орган – легкое, печень, почка,например – имеет каждый свою особую структуру, благодаря которой он играетопределенную роль в организме. Точно так же в цитоплазме имеются особыеструктуры, своеобразное строение которых дает им возможность нести определенныефункции, необходимые для метаболизма клетки; эти структуры называют органеллами(«маленькими органами»).

    Выяснениеприроды, функции и распределения органелл цитоплазмы стало возможным лишь послеразвития методов современной биологии клетки. Наиболее полезными в этом отношении оказались: 1) электронная микроскопия; 2) фракционирование клеток, спомощью которого биохимики могут выделять относительно чистые фракции клеток,содержащие определенные органеллы, и изучать, таким образом, отдельныеинтересующие их метаболические реакции; 3) радиоавтография, сделавшая возможнымнепосредственное изучение отдельных метаболических реакций, протекающих в органеллах.

    Метод, с помощьюкоторого органеллы выделяют из клеток, называют фракционированием. Этот методоказался очень плодотворным, дав биохимикам возможность выделять разныеорганеллы клетки в относительно чистом виде. Он позволяет, кроме того,определять химический состав органелл и содержащиеся в них ферменты и наосновании получаемых данных делать выводы об их функциях в клетке. В качествепервого шага клетки разрушают путем гомогенизации в какой-нибудь подходящейсреде, которая обеспечивает сохранность органелл и предотвращает их агрегацию.Очень часто для этого используют раствор сахарозы. Хотя митохондрии и многиедругие клеточные органеллы остаются при этом неповрежденными, такие мембранныепереплетения, как эндоплазматический ретикулум, а также плазматическаямембрана, распадаются на фрагменты. Однако образующиеся фрагменты мембраннередко замыкаются сами на себя, в результате чего получаются округлые пузырькиразличных размеров.

    На следующемэтапе клеточный гомогенат подвергают ряду центрифугирований, скорость ипродолжительность которых всякий раз возрастает; этот процесс называетсядифференциальным центрифугированием. Разные органеллы клетки осаждаются на днецентрифужных пробирок при различных скоростях центрифугирования, что зависит отразмеров, плотности и формы органелл. Образующийся осадок можно отобрать иисследовать. Быстрее всех осаждаются такие крупные и плотные структуры, какядра, а для осаждения более мелких и менее плотных структур, таких, какпузырьки эндоплазматического ретикулума, требуются более высокие скорости иболее длительное время. Поэтому при низких скоростях центрифугирования ядраосаждаются, а другие клеточные органеллы остаются в суспензии. При болеевысоких скоростях осаждаются митохондрии и лизосомы, а при длительном центрифугированиии очень высоких скоростях в осадок выпадают даже такие мелкие частицы, какрибосомы. Осадки можно исследовать с помощью электронного микроскопа, чтобыопределить чистоту полученных фракций. Все фракции до некоторой степенизагрязнены другими органеллами. Если тем не менее удается добиться достаточнойчистоты фракций, то их подвергают затем биохимическому анализу, чтобыопределить химический состав и ферментативную активность выделенных органелл.

    Сравнительнонедавно был создан другой метод фракционирования клеток – центрифугирование вградиенте плотности; при этом центрифугирование производят в пробирке, вкоторой предварительно наслаивают друг на друга растворы сахарозы всевозрастающей концентрации, а следовательно, и возрастающей плотности. Прицентрифугировании содержащиеся в гомогенате органеллы располагаются вцентрифужной пробирке на тех уровнях, на которых находятся растворы сахарозы,соответствующие им по плотности. Этот метод дает биохимикам возможностьразделять органеллы одинаковых размеров, но разной плотности (рис. 1.).

    Радиоавтография– сравнительно новый метод, безмерно расширивший возможности как световой, таки электронной микроскопии. Это в высшей степени современный метод, обязанныйсвоим возникновением развитию ядерной физики, которое сделало возможнымполучение радиоактивных изотопов различных элементов. Для радиоавтографиинеобходимы, в частности, изотопы тех элементов, которые используются клеткойили могут связываться с веществами, используемыми клеткой, и которые можновводить животным или добавлять к культурам в количествах, не нарушающихнормального клеточного метаболизма. Поскольку радиоактивный изотоп (илипомеченное им вещество) участвует в биохимических реакциях так же, как егонерадиоактивный аналог, и в то же время испускает излучение, путь изотопов ворганизме можно проследить с помощью различных методов обнаружениярадиоактивности. Один из способов обнаружения радиоактивности основан на ееспособности действовать на фотопленку подобно свету; но радиоактивное излучениепроникает сквозь черную бумагу, используемую для того, чтобы защититьфотопленку от света, и оказывает на пленку такое же действие, как свет.

    Чтобы на препаратах,предназначенных для изучения с помощью светового или электронного микроскопов,можно было обнаружить излучение, испускаемое радиоактивными изотопами,препараты покрывают в темном помещении особой фотоэмульсией, после чегооставляют на некоторое время в темноте. Затем препараты проявляют (тоже втемноте) и фиксируют. Участки препарата, содержащие радиоактивные изотопы,воздействуют на лежащую над ними эмульсию, в которой под действием испускаемогоизлучения возникают темные «зерна». Таким образом, получают радиоавтографы (отгреч. радио – лучевидный, аутос – сам и графо – писать).

    Вначале гистологи располагалилишь несколькими радиоактивными изотопами; так, например, во многих раннихисследованиях с применением радиоавтографии использовался радиоактивный фосфор.Позднее стали использовать значительно больше таких изотопов; особенно широкоеприменение нашел радиоактивный изотоп водорода – тритий.

    Радиоавтографияимела и имеет до сих пор очень широкое применение для изучения того, где и какв организме протекают те или иные биохимические реакции.

    Химическиесоединения, меченые радиоактивными изотопами, которые используются дляисследования биологических процессов, называют предшественниками.Предшественники – это обычно вещества, подобные тем, которые организм получаетиз пищи; они служат строительными блоками для построения тканей и включаются всложные компоненты клеток и тканей таким же образом, как в них включаютсянемеченые строительные блоки. Компонент ткани, в который включается меченыйпредшественник и который испускает излучение, называется продуктом.

    Клетки,выращиваемые в культуре, хотя и принадлежат к одному и тому же типу, в любойданный момент времени будут находиться на разных стадиях клеточного цикла, еслине принять специальных мер для синхронизации их циклов. Тем не менее, путемвведения в клетки тритий-тимидина и последующего изготовления радиоавтографовможно определить продолжительность различных стадий цикла. Время наступленияодной стадии – митоза – можно определить и без меченого тимидина. Для этоговыборку клеток из культуры держат под наблюдением в фазово-контрастноммикроскопе, который дает возможность непосредственно следить за течением митозаи устанавливать его сроки. Продолжительность митоза обычно равна 1 ч, хотя вклетках некоторых типов он занимает до 1.5 ч.

    Определениепродолжительности G 2-периода .

    Для определенияпродолжительности G 2–периода применяют метод, известный под названием импульснойметки: к культуре клеток добавляют меченый тимидин, а спустя короткоевремя заменяют культуральную среду свежей, с тем, чтобы предотвратитьдальнейшее поглощение клетками меченого тимидина. При этом метку включаюттолько в те клетки, которые в течение кратковременного пребывания в среде с тритий-тимидином находились в S-периоде клеточного цикла. Доля такихклеток невелика и лишь небольшая часть клеток получит метку. Кроме того, всеклетки, включающие метку, будут находиться в интерфазе – от клеток, едвавступивших в S-период, дотаких, которые почти закончили его за время воздействия тритий-тимидина. Впробе, взятой сразу после удаления меченого тимидина, метка содержится только винтерфазных ядрах, принадлежащих клеткам, которые в период воздействия меткинаходились в S-периоде; те жеклетки, которые в этот период находились в состоянии митоза, остаютсянемечеными.

    Если затем продолжать отбиратьиз культуры пробы через определенные промежутки времени и изготовлять длякаждой последовательной пробы радиоавтограф, то наступит момент, когда метканачнет появляться в митотических d -хромосомах . Метки будутвключаться во все те клетки, которые в период наличия в среде тритий-тимидинанаходились в S-периоде, причемсреди этих клеток будут как только что вступившие в S-период, так ипочти закончившие его. Совершенно очевидно, что эти последние первыми средимеченых клеток проделают митоз и, следовательно, в их митотических хромосомахобнаружится метка. Тем самым промежуток между 1) временем, когда из культурыбыл удален меченый тимидин, и 2) временем появления меченых митотическиххромосом будет соответствовать продолжительности G 2–периодаклеточного цикла.

    Определениепродолжительности S -периода .

    Поскольку клетки, находящиесяв момент введения в среду метки в самом конце S-периода,первыми вступят в митоз, то, следовательно, в тех клетках, у которых S-периодначинается непосредственно перед удалением метки, меченые митотическиехромосомы появятся в последнюю очередь. Поэтому, если бы нам удалось определитьпромежуток между временем вступления в митоз клеток, помеченных первыми, иклеток, помеченных последними, мы установили бы продолжительность S-периода. Однако,хотя время, когда впервые появляются меченые митотические хромосомы, установитьлегко, время вступления в митоз клеток, помеченных последними, определитьневозможно (этому препятствует очень большое количество меченых делящихсяклеток в последних пробах). Поэтому продолжительность S-периодаприходится определять другим способом.

    При исследованиирадиоавтографов последовательных проб клеток, отбираемых через одинаковыепромежутки времени, обнаруживается, что доля клеток, несущих метку в своихмитотических хромосомах, постепенно возрастает, пока мечеными не окажутсябуквально все делящиеся клетки. Однако, по мере того как клетки одна за другойзавершают митоз, они превращаются в меченые интерфазные клетки. Первымизавершают митоз те из меченых клеток, которые вступили в него первыми; исоответственно из клеток с мечеными митотическими хромосомами последнимизавершают митоз те, которые вступили в него позже всех. Посколькупродолжительность митоза всегда одинакова, то, следовательно, если бы мы моглиопределить промежуток между: 1) временем окончания митоза в клетках, включившихметку первыми, и 2) временем окончания митоза в клетках, включивших меткупоследними, мы установили бы продолжительность S-периода.Продолжительность S-периода нетрудно установить, определив промежутокмежду: 1) моментом времени, когда 50% митотических клеток в культуре несутметку, и 2) моментом времени, после которого культура уже не содержит 50%меченых клеток.

    Определениевремени генерации (общей продолжительности всего клеточного цикла).

    Продолжая отбирать из культурыпробы клеток, можно обнаружить, что меченые фигуры митоза в какой-то моментсовершенно исчезают, а затем появляются вновь. Такие делящиеся клеткипредставляют собой дочерние клетки, происходящие от тех материнских клеток,которые включили метку, находясь в момент воздействия тритий-тимидина в S-периоде. Этиматеринские клетки перешли в S-период, разделились, а затем прошличерез вторую интерфазу и второе деление, то есть проделали один полный цикл ичасть следующего. Время, необходимое для прохождения полного клеточного цикла,называется временем генерации. Оно соответствует промежутку между двумяпоследовательными пиками включения метки и обычно соответствует отрезку междутеми точками последовательных восходящих кривых, в которых 50% фигур митозасодержат метку.


    Литература.

    А.Хэм,Д.Кормак «Гистология», том 1 Москва «МИР» 1982;

    М.Г.Абрамов«Клиническая цитология» Москва «МЕДИЦИНА» 1974;

    Ю.С.Ченцов«Общая цитология»



    Похожие статьи